In this paper, we propose a classifier based on modular networks using an unsupervised learning method. The structure of each module is designed through stochastic analysis of input data and each module classifier data independently. The result of independent classification of each module and a measure of the nearest distance are integrated during the final data classification phase to allow more precise c classification. Computation time is decreased by deleting modules that have been classified to be incorrect during the final classification phase. Using this method. a neural network sharing the best performance was implemented without considering. lots of of variables which can affect the performance of the neural network.
From May 1988 to December 1995, 77 patients underwent surgical re ection for primary non-small cell lung cancer at GNUH, and were evaluated clinically. There were 65 males and 12 females(M:P=5.4:1), and the peak incidence of age was 6th decade of life(44.5%). The major symptoms were cough, hemoptysis and chest pain due to anatomical effects of the mass. Histopathologically, squamous cell carcinoma was 81.8%, adenocarcinoma 14.3%, and adenosquamous carcinoma 3.9% . There was no significant difference in survival among three groups. The pneumonectomy was performed in 26 cases(33.8%), lobectomy 30 cases(38.9%), bilobectomy 9 cases(11.7%), and overall resectability was 84.4%. The postoperative official stagings were as follows ; 26 patients of stage I(34%), 14 patients of stage II(18%), 22 patients of stage IIIa(29%), 14 patients of stage IIIb(18%), and one patients of stage IV(1%). In all cases, 3 year survival rate are showed stage 183%, stage II 26%, stage IIIa 17%, and stage IIIb 0%.
Koo, Jachoon;Chae, Mi Suk;Lee, Jeoung-Ki;Whang, Sung Soo
Korean Journal of Plant Taxonomy
/
v.37
no.4
/
pp.419-430
/
2007
This study was conducted to know the taxonomic features of nuclear ribosomal ITS DNA sequences, ITS1, ITS3 and 5.8S regions, as to nine individuals belonging to four Oxalis species in Korea and an induced species. Sequences of the same regions of sixteen taxa deposited in GenBank were also aligned with those of Korean species as outgroups. The length of ITS sequences aligned in this study is 679 by in total. Evidences, from not only the sequence similarities and divergences but also the phylogenetic and statistical treatments with ITS sequences aligned, were useful for the taxonomy of the genus. The similarity of sequences, among both cauline and acauline taxa, is high as 89% and 95% respectively, but between cauline and acauline taxa, relatively low in the range of 64~69%. The sequence divergences, among both cauline and acauline taxa, is also high as much as 0.36~0.42, but between both cauline and both acauline taxa, low as 0.04~0.06. Two groups between cauline and acauline taxa are paraphyletic, and each group makes a single Glade with a high bootstrap value. The analysis of variance, using ITS sequence aligned, revealed that taxa are significantly different in the level of 0.5%, and O. corymbosa, an induced speices, is also separated from the Korean taxa in the Duncan analysis.
Proceedings of the Korean Society of Precision Engineering Conference
/
1995.10a
/
pp.393-396
/
1995
In this syudy, the researches classifying the artificial and natural flaws in welding parts are performed using the smart pattern recognition technology. For this purpose the smart signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing,feature extraction , feature selection and classifier selection is treated by bulk. Specially it is composed with and discussed using the statistical classifier such as the linear disciminant function classifier, the empirical Bayesian classifier. Also, the smart pattern recognition technology is applied to classification problem of natural flaw(i.e multiple classification problem-crack,lack of penetration,lack of fusion,porosity,and slag inclusion, the planar and volumetric flaw classification problem). According to this results, if appropriately learned the neural network classifier is better than ststistical classifier in the classification problem of natural flaw. And it is possible to acquire the recognition rate of 80% above through it is different a little according to domain extracting the feature and the classifier.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.10
/
pp.63-70
/
2018
Biomedical signal measurement technology using images has been developed, and researches on respiration signal measurement technology for maintaining life have been continuously carried out. The existing technology measured respiratory signals through a thermal imaging camera that measures heat emitted from a person's body. In addition, research was conducted to measure respiration rate by analyzing human chest movement in real time. However, the image processing using the infrared thermal image may be difficult to detect the respiratory organ due to the external environmental factors (temperature change, noise, etc.), and thus the accuracy of the measurement of the respiration rate is low.In this study, the images were acquired using visible light and infrared thermal camera to enhance the area of the respiratory tract. Then, based on the two images, features of the respiratory tract region are extracted through processes such as face recognition and image matching. The pattern of the respiratory signal is classified through the k-nearest neighbor classifier, which is one of the statistical classification methods. The respiration rate was calculated according to the characteristics of the classified patterns and the possibility of breathing rate measurement was verified by analyzing the measured respiration rate with the actual respiration rate.
Land cover classification is an important tool for preventing natural disasters, collecting environmental information, and monitoring natural resources. Hyperspectral imaging is widely used for this task thanks to sufficient spectral information. However, the curse of dimensionality, spatiotemporal variability, and lack of labeled data make it difficult to classify the land cover correctly. We propose a novel classification framework for land cover classification of hyperspectral data based on convolutional neural networks. The proposed framework naturally incorporates full spectral features with the information from neighboring pixels and has advantages over existing methods that require additional feature extraction or pre-processing steps. Empirical evaluation results show that the proposed framework provides good generalization power with classification accuracies better than (or comparable to) the most advanced existing classifiers.
Kim, Chan-Kyu;Chae, Yun-Won;Kim, Myung-Hoon;Lee, Jeong-Hun;Ko, Dae-Sik;Jung, Dae-In
The Journal of the Korea Contents Association
/
v.9
no.7
/
pp.225-232
/
2009
This study conducted the following experiment to examine effects of cardiovascular function on lumbar stabilization exercise(LSE) in floor or swiss ball. This experiment was conducted to compare heart rate, systolic blood pressure, diastolic blood pressure and peripheral vascular oxygen saturation effects by lumbar stabilization exercise in floor or swiss ball with 18 normal adult and it divided 9 subjects. experiment group (1) is applying LSE on floor group and (2) is applying LSE on swiss ball group. Heart rate was measured by portable heart rate manometer, blood pressure was measured by hemodynamometer, and peripheral vascular oxygen concentration was measured using a computerized NURYTEC measuring apparatus analysis. These result lead us to the conclusion that systolic blood pressure and peripheral vascular oxygen concentration were influenced by LSE. but there was not differential effect between each groups. These results suggest that LSE has the capability to improve heart rate, blood pressure, peripheral vascular oxygen concentration. Consequently, LSE would be lead to increment of cardiovascular function.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1448-1451
/
2009
최근 지구온난화와 기후변화에 관련된 각종 징후들이 여러 분야에서 주요 화두로 자주등장하고 있다. 이들은 주로 평균기온의 상승이나 강우패턴의 변동 등과 같은 기상학적 특성변화를 중심으로 다루어지고 있는데 이를 수문학적 관점에서 유추해 본다면 물 순환과정(hydrological cycle)내 성분별 거동양상의 변화로 해석할 수 있을 것이다. 유역의 특성을 파악하고 발생할 수 있는 수자원의 양적 불균형에 따른 문제점을 탐지하여 그에 대비하기 위해서는 무엇보다도 신속한 정보의 제공이 우선되어야 한다. 또한 이러한 정보를 이용하여 유역의 습윤 및 건조 상황을 모니터링하거나 예측하기 위해서는 즉각적이고 연속적인 정보의 수집이 요구된다. 본 연구에서는 기 수행된 연구결과를 바탕으로 기후학적 물수지 방법에 의하여 1998년부터 2004년까지의 금강유역에 대한 습윤지표를 산정하였다. 그러나 습윤지표가 유역의 습윤 혹은 건조상태를 반영한다고 하나 습윤지표에 익숙하지 않은 사용자의 경우 직관적으로 이 지표만을 이용하여 유역의 상황을 판단하기에는 어려움이 있다. 따라서 본 연구에서는 습윤지표를 통계학적 분포특성에 따라 유역의 습윤 및 건조 상황으로 분류하는 방법을 제안하였으며, 이를 바탕으로 당시 지역적 실제 현상과의 연관성 등을 통하여 가뭄을 평가하는 방법을 제안하고 자 한다.
Kim, Wonju;Park, Sun;Cho, Jiu;Na, Yeonghwa;Yang, Huyeol;Lee, Seong Ro
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.1010-1011
/
2012
적조란 유해조류의 일시적인 대 번식으로 바다를 적색으로 변화시키며 연안 환경 및 바다 생태계에 악영향뿐만 아니라 양식장의 어패류를 집단 폐사 시키는 현상이다. 적조에 의한 양식어업의 피해는 매년 발생하고 있으며 매년 적조방제에 많은 비용을 소비하고 있다. 이 때문에 적조 발생을 미리 예측할 수 있으면 적조에 대한 피해 및 방재 비용을 최소화 시킬 수 있다. 본 논문은 앙상블 학습은 이용한 적조발생 예측 방법을 제안한다. 제안방법은 앙상블 학습의 bagging과 boosting 방법을 이용하여서 적조를 예측의 성능을 향상시킨다. 실험결과 제안방법은 단일 분류기에 비하여서 더 좋은 적조 발생 예측 성능을 보였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.12
/
pp.2259-2264
/
2008
Significant genes are defined as genes in which the expression level characterizes a specific experimental condition. Such genes in which the expression levels differ significantly between different groups are highly informative relevant to the studied phenomenon. In this paper, first the system can detect informative genes by similarity scale combination method being proposed in this paper after normalizing data with methods that are the most widely used among several normalization methods proposed the while. And it compare and analyze a performance of each of normalization methods with multi-perceptron neural network layer. The Result classifying in Multi-Perceptron neural network classifier for selected 200 genes using combination of PC(Pearson correlation coefficient) and ED(Euclidean distance coefficient) after Lowess normalization represented the improved classification performance of 98.84%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.