디지털 비디오 데이터를 효율적으로 브라우징 하는데 필요한 비디오 분할에 관한 연구가 활발하게 진행되고 있다. 본 연구에서는 비디오 데이터를 Shot단위로 분할하고, Shot내부에서 카메라 동작과 객체 움직임 분석을 이용한 sub-shot으로 분할하고자 한다. 연구 방법으로는 I-frame의 DC 영상을 이용하여 픽쳐그룹을 Shot(장면이 바뀐 경우), Move(카메라 동작,객체움직임), Static(영상의 변화가 거의 없는 경우)로 세분화하고 해당 픽쳐 그룹의 P, B-frame을 검사하여 정확한 컷 발생 위치, 디졸브, 카메라동작, 객체 움직임을 검출하게 된다. 픽쳐그룹 분류에서 정확성을 높이기 위해 계층적 신경망과 다중 특징을 이용한다. 정확한 컷 발생위치 검출하기 위해서 P, B프레임의 메크로블럭 타입을 이용한 통계적 방법을 이용하고, 디졸브, 카메라 동작, 객체 움직임을 검출하기 위해서 P, B-frame의 메크로블럭 타입과 움직임 벡터를 이용한 신경망으로 검출한다. 본 연구에서는 계층적 탐색을 이용하여 시간을 단축할 수 있고, 계층적 신경망과 다중 특징을 이용하여 픽쳐 그룹을 세분화 할 수 있고, 메크로 블록 타입과 통계적 방법을 이용하여 정확한 컷 검출을 할수 있고, 신경망을 이용하여 디졸브, 카메라 동작, 객체움직임을 검출 할 수 있음을 확인한다.
본 논문에서는 각 프레임으로부터 추출된 통계적 특성을 이용하여 동영상의 분할방법과 분할된 각 장면에 대한 대표프레임을 추출하는 방법을 제안한다. 제안된 방법은 동영상의 각 프레임에 대하여 다해상도 분석을 실시하여 저주파 부 밴드로부터 히스토그램 특징을 추출하여 급격한 장면전환을 분할하는데 이용하였으며 또한 점진적인 장면전환을 검출하기 위해서는 고주파 부 밴드로부터 계산되는 화소의 분산치를 계산하여 특징벡터로 사용하였다. 실험의 결과를 통하여 제안된 동영상의 분할방법과 대표프레임 추출에 대한 알고리즘들이 동영상 자료의 분석 및 색인을 위한 효율적인 동영상 분할을 가능하게 하며, 차후 내용기반 영상과 비디오의 색인 및 검색을 위한 전처리의 단계로 사용되어질 수 있는 매우 유용한 방법임을 보였다.
비전 연구에 있어서 객체 추적은 무엇보다도 중요시 되어 왔다. 특히 비디오 감시 시스템에서의 객체 추적은 매우 중요하다. 본 논문에서는 영상 내에서 움직이는 객체를 추출하고 객체내의 다중 후보블록의 통계적 특징을 이용한 추적 시스템을 구성하였다. 객체를 추적하기 위해서는 먼저 움직이는 객체 추출이 선행되어야 한다. 객체 추출은 영상 내에서 배경 프레임과 매 프레임에서의 현재 프레임간의 차 연산에 의한 가중치를 이용하여 객체의 움직임을 판단하고 추출하였다. 움직이는 객체는 본 논문에서 제안한 다중 후보 블록 알고리즘을 수행하여 추적에 필요한 통계 값을 획득한다. 통계 값으로는 방향성에 필요한 블록의 중심 좌표 값과 객체추적에 필요한 객체간의 매칭 정도를 사용하였다. 본 논문에서 제안한 추적 시스템은 민감한 빛의 변화에도 강건하였으며, 특정 블록에 대해서만 연산 수행을 수행하므로 컴퓨터의 연산을 줄여 실시간 추적도 가능하다.
본 논문에서는 통계적 특징을 이용하여 CoG의 양 불량을 판단하기 위한 시각 검사 시스템을 제안한다. 제안된 시스템은 허프 변환을 이용하여 입력 영상의 회전 오차를 보상한 후 투영 기법을 이용하여 검사 영역을 추출한다. 그런 다음 검사 영역으로부터 패드 영역을 추출하고, 추출된 패드 영역에 대한 통계적 특징을 분석하여 최종적인 검사 결과를 도출하였다.
생체인식 시스템은 개인의 물리적/행동적 특성을 측정하여 신원을 확인하기 위한 시스템이다. 이러한 시스템에서 사용되는 특징들은 잡음 등에 의해서 쉽게 영향을 받기 때문에 매우 많은 변형들이 존재하고, 따라서 변형된 특징들을 효과적으로 다루기 위해 다양한 기계학습 방법들이 사용되고 있다. 그런데, 기존의 자료주도적인 방법들을 특정 생체인식 시스템에 적용하기 위해서는 시스템에 등록할 각 사람들로부터 충분히 많은 데이터를 획득해야하는 어려움을 겪게 된다. 또한 시스템에 미등록된 사람의 데이터가 제시될 가능성 등, 무한한 수의 변형이 존재하는 문제점을 갖고 있다. 이러한 문제점들로 인해 데이터의 분포특성을 분석하고 예측하는 것이 어렵다. 생체인식 시스템의 이러한 고유의 문제점을 극복하기 위해서는 새로운 효율적인 식별 및 검증 방법을 필요하다. 따라서, 본 논문에서는 통계적 가설 검증 이론에 기초한 간단한 방법을 제안하고, 실세계 데이터에 대한 실험을 통해 제안한 방법의 가능성을 확인한다.
역전파 신경망과 데이터분포 특징을 고려한 새로운 알고리즘을 개발하였으며, 이를 플라즈마 데이터의 분류에 응용하였다. 데이터 분포는 통계적인 평균치와 표준편차를 이용하여 특징지었으며, 바이어스인자를 이용하여 9 종류의 데이터를 발생하였다. 각 데이터에 대하여 은닉층의 뉴런수를 변화시키며, 바이어스와 뉴런수에 따른 모델성능을 평균학습시간 (ATT), 평균예측정확도 (APA), 최적예측정확도 (BPA), 그리고 분류정확도 (CA) 측면에서 세분하여 분석하였다. ATT와 APA에 대해서는 최적화된 학습인자와 데이터 분류인자가 일치하였고, BPA와 CA는 일치하지 않았다. 두 인자간의 상호작용을 동시에 최적화함으로써 완전 분류를 달성하였다.
본 논문은 문서 영상에 대해 투영을 사용하여 영역을 나누었고 각 영역에 대해 고주파 밴드의 웨이블렛 계수의 통계적 분산과 히스토그램을 기반으로 한 두 가지 특징을 사용하여 문자와 그림으로 분류하였다. 투영으로 나누어진 영역들에 대해 일정 크기의 블록으로 나누고 두 가지 특징에 따라 문자와 그림으로 분류하였다. 따라서 투영에 의해 나뉜 영역 중 문자와 그림이 혼합되어 의미가 모호한 영역에 대해 잘못 분류되는 가능성을 줄일 수 있었다.
본 논문은 언어의 통계적 특징을 이용하여 범용의 문장경계 인식기를 제안한다. 제안하는 방법은 대량의 코퍼스 내에서 사용되고 있는 문장 경계를 기준으로 음절 및 어절 등의 자질을 이용하여 통계적 특징을 추출하고 다양한 기계학습 기법을 사용하여 문장경계를 인식하고자 하였다. 또한 특정 언어나 도메인에 제한적이지 않고 범용적인 자질만을 사용하려고 노력하였다. 언어의 특성상 문장의 구분이 애매한 경우 또는 잘못 사용 된 구두점 등의 경우에도 적용 가능하도록 다양한 자질을 사용하여 실험하였으며, 한국어와 영문 코퍼스에 대해서 동일한 자질을 적용하여 실험하여 본 논문에서 제시한 자질들이 한국어 및 다른 언어권의 언어에도 적용될 수 있는 범용적인 자질임을 확인할 수 있었다. 한국어 문장경계 인식을 위한 기계학습 및 실험을 위해서 세종계획 코퍼스를 사용하였으며, 성능척도로는 정확률과 재현율을 사용하였으며, 실험결과 제안한 방법으로 99%의 정확률과 99.2%의 재현율을 보였다. 영문의 경우는 Wall Street Journal 코퍼스를 사용하였으며, 동일한 자질을 적용하여 실험한 결과 98.9%의 정확률과 94.6%의 재현율을 보였다.
본 논문에서는 다양한 모양의 부품 영상을 CCD카메라로 입력 받아 부품 영상에 포함된 부품의 내용 정보를 이용하여 부품을 분류하는 계층적 부품 분류 시스템을 구현하였다. 제안된 시스템은 부품 영상에 대해서 통계적 방법과 템플리트를 계층적으로 적용하여 부품을 분류하는 시스템이다. 2,000개의 부품 영상을 이용하여 실험한 결과, 84%의 분류율을 보였다.
Communications for Statistical Applications and Methods
/
제2권2호
/
pp.404-413
/
1995
2수준계 요인실험법에서 Kim(1992) 에 의해 균형배열을 이용하여 설계된 resolution V 포화균형부분실시법에서 추정량들의 공분산행렬을 계산하여 통계적 특성을 연구하였다. 이러한 부분실시법은 최소의 처리조합수를 가지고 주효과와 2인자 교호작용까지 분석할 수 있는 특징이 있다. 특히 본 논문에서는 인자의 수에 따라 설계가능한 8개의 부분실시법들간의 유사성과 통계적 효율성, 그리고 index number들의 변화에 따른 공분산행렬의 특성을 살펴보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.