자조의 표현에서 군집화는 주어진 데이터를 서로 유사한 개체들끼리 몇 개의 집단으로 묶는 작업을 수행한다. 군집화의 유사도 결정 측도는 맡은 연구들에서 매우 다양한 것들이 사용되었다. 하지만 군집화 결과의 성능 측정에 대한 객관적인 기준 설정이 어렵기 때문에 군집화 결과에 대한 해석은 매우 주관적이고, 애매한 경우가 많다. 퍼지 군집화는 이러한 주관적인 군집화 문제에 있어서 객관성 있는 군집 결정 방안을 제시하여 준다. 각 개체들이 특정 군집에 속하게 될 퍼지 멤버 함수값을 원소로 하는 유사도 행렬을 통하여 군집화를 수행한다. 본 논문에서는 차원 축소기법의 하나인 주성분 분석과 강력한 통계적 학습 이론인 베이지안 학습을 결합한 군집화 모형을 제안하여, 객관적인 퍼지 군집화를 수행하였다. 제안 알고리즘의 성능 평가를 위하여 UCI Machine Loaming Repository의 Iris와 Glass Identification 데이터를 이용한 실험 결과를 제시하였다.
본 논문에서는 제한된 자원을 사용하는 기기에 적합한 경량화된 한국어 형태소 분석 및 품사 부착 방법을 제안한다. 관련된 초기 연구로는 규칙에 기반을 둔 방법들이 적용되었으나 최근에는 통계에 기반을 둔 방법들을 중심으로 연구되고 있다. 계산 처리 능력과 사용 가능한 메모리가 제한되는 환경에서는 규칙에 기반을 둔 방법보다 상대적으로 많은 자원을 사용하는 통계에 기반을 둔 방법을 사용하여 형태소 분석 및 품사 부착을 수행하기에는 한계가 있다. 본 논문에서는 기존의 규칙에 기반을 둔 형태소 분석 방법인 좌최장일치법을 개선하여 형태소 분석을 수행하고, 통계적인 방법인 hidden Markov model을 축소하여 형태소 품사 부착을 수행한다. 제안하는 방법은 기존의 hidden Markov model을 사용한 시스템과 유사한 성능을 보여주며 소량의 메모리 사용과 월등히 빠른 속도로 형태소 분석 및 품사 부착을 수행할 수 있다.
본 논문에서는 주파수공간에서의 주성분 분석을 사용하여 기상자료를 분석하고자 한다. 주파수공간에서의 주성분분석은 차원축소를 위해서도 사용되지만, 주요한 패턴을 뽑아내는 데 사용되는 통계적 방법 중 하나이다. 일반적으로 주파수공간에서의 주성분 분석은 두 가지의 방법이 있는데, Hilbert PCA와 frequency domain PCA가 그것이다. 본 논문에서는 기존의 시간공간 주성분 분석과 함께 두 가지 주파수공간 주성분 분석 방법을 비교하였다. 시뮬레이션 자료를 통하여 주파수공간 주성분 분석 방법의 유용성을 보였으며, 열대 태평양 지역의 해수표층 온도값에 주성분 분석 방법들을 적용하여 기상자료 분석에 대한 유용성을 확인하였다.
독립성분분석은 혼합된 신호에서 원신호들을 분리하기 위해서 사용되는 다변량 분석방법으로서, 블라인드 음원 분리 중 가장 널리 사용되는 방법이다. 독립성분분석은 주성분분석이나 요인분석과 같이 선형변환을 사용하지만, 원신호들의 통계적 독립과 비정규성 가정을 필요로 한다는 점에서 다르다. 설명되는 분산의 누적비율이 클수록 더 중요한 성분을 의미하게 되는 주성분분석과 달리, 독립성분분석에서는 독립성분들의 중요순서를 결정하는데 적절한 유일한 기준이 정해지지 않는다. 군집분석이나 차원축소된 그래프 작성 등과 같은 후속 연구를 진행하기 위해서는 일부의 주요 독립성분을 사용하게 되므로, 성분의 순서를 정하는 것은 의미가 있다. 본 연구에서는 성분의 순서를 결정하기 위한 몇 가지 기준의 성능을 비교하였다. 첨도와 첨도의 절댓값, 음의 엔트로피, 콜모고로프-스미르노프 통계량, 계수제곱합을 이용한 방법이 고려되었다. 이들은 알려진 그룹을 분류하는 능력을 기준으로 평가되었다. 두 가지 형태의 자료를 이용한 분석결과를 제시하였다.
본 연구의 목적은 창업사관학교의 운영사례와 성과에 대한 분석을 통해 정책적 시사점을 찾기 위한 것이다. 연구의 방법은 창업사관학교 운영 과정에 산출된 데이터를 이용한 통계적 분석을 활용하였다. 연구 결과 성별과 나이에 따른 단기성과의 차이가 있다. 두 번째, 입소자 선정평가는 단기성과와의 상관관계가 없고, 오히려 세부 서류평가 부분은 음의 상관관계가 나타났다. 세 번째, 멘토에 따라 단기성과의 차이가 없다. 전략적 활용 방안은 창업사관학교에 대한 평가에서 창업자의 단기성과에 대한 반영을 축소해야한다는 것이다. 그리고 입소자 선정 평가방법을 개선할 필요가 있다는 것이라는 것이다. 본 연구의 한계점으로 통계분석을 통한 실증연구가 되기에 부적절하다는 점으로 정책 시사점의 근거도 취약성을 내포하고 있다. 그리고 통계분석으로는 케이스 수가 충분하지 못한 점이다. 따라서 향후 여러 대학의 사례를 포함시켜 케이스 수를 늘인 실증연구를 진행코자한다.
Journal of the Korean Data and Information Science Society
/
제26권6호
/
pp.1377-1386
/
2015
한 나라 전체의 경제활동 수준을 나타내는 경기의 변동과 밀접한 관계를 지닌 지표로서 GDP갭을 꼽을 수 있다. GDP갭은 초과수요압력이나 고용사정에 대한 정보를 제공하기 때문에 중앙은행의 통화정책 수행시 중요한 고려변수로 꼽히고 있다. 그러나, GDP갭 총량만으로는 최근의 경제구조 변화라든지 대내외 경제여건의 영향 등을 살펴볼 수 없는 등 제한적인 부분이 있다. 본 논문에서는 통계적 필터링 기법에 의해 새로운 갭을 추정하고 다양한 물가영향 모형을 설정하여 각 요인들이 인플레이션에 미치는 영향력을 추정하는 한편 동 요인들의 영향력이 시간에 따라 변화하는지도 분석하였다. 분석결과, GDP갭의 물가영향력이 2000년대 들어 대체로 그 영향력이 축소되는 것으로 추정된 반면, 글로벌갭이 국내 물가에 미치는 영향력은 증대된 것으로 나타났다. 이러한 변화는 최근의 저물가 현상이 국내요인과 더불어 세계 경기침체에서 비롯된 수출의 둔화와 같은 국외여건에 영향을 받았다는 것을 의미한다.
제품의 품질 수준 제고를 위해 통계적 공정 관리(SPC : Statistical Process Control)의 다양한 관리도가 기업의 생산 공정을 관리하는데 사용된다. 관리도에 기록되는 공정 데이터는 특정 요인(Assignable Cause)에 의한 이상이 발생했을 때 그 요인에 따라 서로 다른 패턴(Pattern)으로 변화한다. 이러한 패턴을 구별하는 관리도 패턴(CCP : Control Chart Pattern) 인식(Recognition)은 공정에 대한 관리자의 빠른 의사 결정을 위해 매우 중요하다. 앞 선 연구들은 수집되는 원 데이터를 가공 하지않고 그대로 사용하였기 때문에 인식기(Recognizer)의 성능과 학습 속도가 저하되는 문제점이 있었다. 따라서 최근 데이터의 차원 축소와 인식기의 성능 향상을 위해 특질 추출법(Feature Extraction)을 적용한 특질 기반 인식기(Feature based Recognizer)에 대한 연구가 활발히 진행 중이다. 본 논문은 BDK(Bi-Directional Kohonen Network)를 사용하여 CCP의 참조 벡터(Reference Vector)를 생성하고 참조 벡터와 CCP 데이터의 거리를 기반으로 하는 특질을 추출하였다. 추출된 특질을 인공 신경망 기반 인식기의 입력 벡터로 사용하여 학습하였으며 원 데이터를 사용하여 학습하는 인공신경망 인식기와 예측 정확도 비교를 통해 제안 알고리즘의 성능을 평가하였다.
상수도시설은 운영관리 환경, 사용범위, 빈도 등 특성에 따라 수명이 달라지며, 현행 법률에서 일률적으로 정하고 있는 내용연수와 차별된 접근이 필요함에 따라, 시설의 파손, 보수이력 등 관리현황 및 시설의 경시적인 변화 상태를 조사 분석하여 기술적 판단을 토대로 한 수명평가 방안이 필요하다. 따라서 본 연구에서는 국내외 내용연수 적용현황과 시설별 내용연수 산정 방안, 외국의 상수도시설물 관리 방법, 기존 관로 상태평가 기준 수립을 위한 현황 등을 조사하고, 매설 상수관로에 현장조사를 수행하여, 상수관로의 물리적인 파손위험성과 사고이력을 기반으로 경제적 가치 기준에 의한 잔존수명 평가 기법을 개발하였다. 또한 기존 우리 공사의 노후도 기법을 물리적인 노후진척에 따른 상태변화와 실측 데이터를 활용하여 통계적인 분석을 통하여 평가항목은 축소하고, 신뢰도는 제고하였으며, 관 상태평가를 통해서 합리적인 개량계획 수립을 추진할 수 있도록 관상태평가 가이드라인을 개발하였다.
Journal of the Korean Data and Information Science Society
/
제23권2호
/
pp.235-245
/
2012
로지스틱판별분석은 금융 분야에서 유용하게 사용되고 있는 통계적 기법으로 신용평가 시 해석이 쉽고 우수한 분별력으로 많이 활용되고 있지만 종속변수에 대한 설명변수들의 비선형적인 관계를 설명하는 부분에는 한계점이 있다. 일반화가법모형은 로지스틱판별모형의 장점과 함께 종속변수와 설명변수 사이의 비선형적인 관계도 설명할 수 있다. 그러나 연속형 설명변수의 수가 대단히 많은 경우이 두 방법은 모형에 유의한 변수를 선택해야하는 문제점이 있다. 따라서 본 연구에서는 다수의 연속형 설명변수들을 공통요인분석자혼합모형에 의한 차원축소를 통해 변환된 소수의 요인점수들을 일반화가법모형의 새로운 연속형 설명변수로 사용하여 신용분류를 하는 방법을 제시한다. 실제 금융자료를 이용하여 로지스틱판별모형과 일반화가법모형, 그리고 본 연구에서 제안한 방법에 의한 정분류율을 비교한 결과 본 연구에서 제안한 방법의 분류 성능이 더 우수하였다.
본 연구는 고교학점제 시행을 위한 선결조건, 외적환경개선, 운영방식, 직업계고 특성, 성공적 실행 및 정착에 대하여 직업계고 교원들을 대상으로 설문조사 하였다. 설문조사 후 담당교과(보통교과, 전문교과)별 교원들의 인식차이 유무를 알아보기 위하여 t-test 검증을 통하여 분석한 결과는 다음과 같다. 고교학점제 시행을 위한 선결 조건인 선택형교육과정도입, 교원들의 참여의지, 학교장의 지도성, 학생들의 고교학점제에 대한 인식제고, 과목이수요건, 학년진급요건, 졸업요건 확정, 고교내신 절대평가, 교사별 학생평가, 수능 영향력 축소, 교원 부전공 연수실시 등은 전문교과 담당교원들이 보통교과 담당교원들보다 통계적 유의수준 하에서 더 높게 인식하고 있는 것으로 나타났다. 반면, 고교학점제 시행을 위한 외적환경개선, 운영방식, 직업계고 특성, 성공적 실행 및 정착 관련 변인들은 전문교과 및 보통교과 담당교원들 간의 인식의 차이가 없는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.