• 제목/요약/키워드: 통계적 예측

검색결과 1,043건 처리시간 0.034초

통계적 기반의 장기 기온예측정보를 이용한 기준증발산량 전망 (Forecasting reference evapotranspiration using statistically based long-term temperature prediction information)

  • 김철겸;이정우;이정은;김현준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.390-390
    • /
    • 2021
  • 본 연구에서는 통계적 방법에 의해 예측된 미래기간의 기온정보와 기온기반의 기준증발산량 산정방법을 연계하여 한강권역을 대상으로 최대 12개월의 미래기간에 대한 기준증발산량을 전망하였다. 기온정보는 Kim et al. (2020)의 연구와 같이 글로벌 기후지수와의 원격상관성을 기반으로 개발된 다중회귀모형을 이용하여 미래기간(예측시점 기준 1~12개월)에 대해 월 평균기온을 예측하고 이를 상세화하여 한강권역 내 주요 ASOS 지점별로 최고/최저기온을 도출하였다. 기준증발산량은 Hamon 방법(Hamon, 1960, 1963)을 기반으로 각 지점별로 상세화된 최고/최저기온을 이용하여 동일한 미래기간(1~12개월)에 대해 산정하였다. 한강권역 전체에 대해 2015년 1월~2020년 12월의 월별 평균기온과 각 지점별 산정한 기준증발산량을 활용하여 기온 및 기준증발산량에 대한 예측성을 분석하였다. 한강권역 전체에 대해 예측된 월별 평균기온의 경우 실제 관측값과 비교하였을 때, PBIAS 4.2~6.4%, R2 0.97~0.98, NSE 0.97~0.98 등으로 매우 높은 예측성을 보였다. 지점별로 상세화된 기온정보를 이용하여 산정한 기준증발산량을 실제 기온으로부터 산정한 기준증발산량과 비교한 결과는 PBIAS 5.0~6.8%, R2 0.97~0.98, NSE 0.96~0.97로 기온에 대한 예측성과 유사하게 나타났다. 기온과 기준증발산량 모두 일부 월이나 일부 지점에서 관측값과 비교했을 때 다소 차이를 보이는 경우도 있었으나, 대상유역 전반적으로는 매우 안정적인 예측결과를 확인할 수 있었다. 기준증발산량에 대한 예측결과(미래 1~12개월)는 계절 및 월 단위의 유역 수자원 전망에 유용하게 활용될 수 있을 것으로 판단된다.

  • PDF

강우의 통계적 특성과 AI 모형의 연계를 통한 도시침수예측 (Urban flood prediction through the linkage between the statistical characteristics of rainfall and the AI model)

  • 이연수;유재환;김현일;김병현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.97-97
    • /
    • 2022
  • AI 모형을 적용한 도시지역 침수예측에 대한 연구는 꾸준히 수행되어 왔다. AI 모형을 이용해 도시침수예측을 하기 위해서는 모형에 강우자료를 학습시키게 되는데, 시계열 강우분포 자료를AI 모형의 학습자료로 사용하기에 자료의 양이 너무 많기 때문에 총 강우량만을 이용하여 도시침수예측을 수행한 바 있다(Kim et al., 2021). 하지만 총 강우량만을 AI 모형에 학습시킬 경우, 지속기간 동안 강우가 고르게 분포하는지 불규칙적으로 분포하는지에 대한 정보가 포함되지 않았기 때문에 침수예측력이 떨어질 수 있다. 따라서 본 연구에서는 시계열 강우자료의 통계치를 산정하여 AI 모형에 학습시킴으로써 강우분포특성을 고려한 침수예측을 통해 예측력을 높이고자 한다. 총 강우량만을 학습시킬 경우, 같은 지속시간에 같은 양의 강우가 내리더라도 고른 분포를 가진 강우에 의해서는 실제 침수는 작게 일어나므로 과대예측을, 전체 지속시간 중 특정 시간대에 편향된 분포를 가진 강우에 의해서는 실제 침수가 크게 일어나므로 과소예측을 하는 문제가 발생할 수 있다. 따라서 표준편차를 평균 강우량으로 나눈 값인 변동계수, 강우분포의 뾰족한 정도를 나타내는 첨도, 평균값에 대해 어느 방향으로 비대칭인지를 나타내는 왜도 값을 추가로 학습시킴으로써 시계열 강우자료 전체를 학습시키지 않고도 강우분포를 학습시키지 않았을 때 발생하는 과소·과대예측 문제를 해결할 수 있다. 또한 변동계수 대신 표준편차를 학습시키는 모형, 변동계수와 표준편차를 모두 학습시키지 않는 모형, 변동계수와 표준편차를 모두 학습시키는 모형과의 침수예측 결과 비교를 통해 표준편차와 변동계수 중 어떤 통계치를 학습시키는 것이 적합한지와 비슷한 통계치 자료를 모두 학습시켰을 때의 과적합 문제 등에 대한 결론를 얻을 수 있다.

  • PDF

APCC MME 계절예측정보를 이용한 가뭄전망 (Drought Outlook using APCC MME Seasonal Prediction Information)

  • 강부식;문수진;손수진;이우진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1784-1788
    • /
    • 2010
  • APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 형태의 계절예측정보를 이용하여 3개월 가뭄전망을 수행하였다. APCC MME는 기후예측모형이 가지는 불확실성을 최소화하기 위한 방법으로, 아시아 태평양 지역 내 9개 회원국 16개 기관 21개 기후모형의 계절예측정보를 활용하여, 개별 모형이 가지는 계통오차(Systematic error)를 앙상블 기법을 통하여 상쇄함으로써 최적의 예측자료를 도출한다. 또한, 기후예측 모형이 예측한 대기순환장은 관측 지점변수와 경험적 통계적 관련성을 가지므로, 이를 바탕으로 상세지역의 이상기후에 대한 정보를 도출할 수 있다. 본 연구에서는 가뭄 관리 및 전망을 위한 입력 자료로서, 기상전문 기관인 APEC 기후센터 (APEC Climate Center, APCC)에서 제공하는 전구 규모의 기온 및 강수 전망자료를 기상청 산하 59개 지점의 전망자료로 통계적 규모 축소화 기법을 통해 3개월 예보를 실시하였다. APCC 계절예측자료를 가뭄모니터링시스템의 자료입력 포맷에 따라 적절히 가공한 뒤, 가뭄 관리 및 전망을 위하여 SPI(Standard Precipitation Index) 및 PDSI(Palmer Drought Severity Index)지수의 입력자료로 사용하여 SPI 및 PDSI 지수를 산정하였다. 또한 분위사상법(Quantile Mapping)을 이용하여 총 59개 지점의 과거 월평균 관측값과 최근 2009년에 대한 모의값의 누적확률분포값을 계산하고 모의값의 확률분포를 관측값의 확률분포에 사상시켜 가뭄 전망을 위한 기상변수의 오차를 보정하고자 하였다. 이러한 계절예측정보를 이용하여 가뭄 전망에 대한 신뢰도가 높아진다면, 사전예방 및 피해완화로 가뭄상황에 대한 신속한 대처 및 피해의 경감이 이루어질 수 있을 것이다.

  • PDF

통계적 및 인공지능 모형 기반 태양광 발전량 예측모델 비교 및 재생에너지 발전량 예측제도 정산금 분석 (Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy)

  • 이정인;박완기;이일우;김상하
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.355-363
    • /
    • 2022
  • 우리나라는 2050년 탄소중립을 목표로 신재생에너지 중심으로 에너지 공급원을 전환하고 확대하는 계획을 추진 중이다. 신재생에너지의 간헐적 특성으로 에너지 공급이 불안정성이 커짐에 따라 정확한 신재생에너지 발전량 예측의 중요성이 함께 커지고 있다. 이에 따라 정부는 신재생에너지를 집합화하여 관리하기 위한 소규모 전력중개시장을 개설하였고, 재생에너지 발전량 예측제도를 도입하여 예측정확도에 따라 정산금을 지급하는 제도를 시행 중이다. 본 논문에서는 우리나라 신재생에너지 전원의 대부분을 차지하는 태양광 발전에 대하여 통계적 및 인공지능 모형을 이용하여 예측모델을 구현하였으며, 각 모형의 예측정확도 결과를 비교 분석하였다. 비교 모델 중에서 CNN-LSTM(Convolutional Long Short-Term Memory Neural Networks) 모형이 가장 높은 성능을 가짐을 확인하였다. 예측정확도에 따른 예측제도 정산금 수익을 추정해보았고, 예측보유 기술 수준에 따라 수익 편차가 24% 정도 커질 수 있음을 확인하였다.

불규칙 해상의 선박 횡요의 확률론적 예측 (Stochastic Prediction of Rolling of Ships in Irregular Waves)

  • 권순홍;김대웅
    • 한국해양공학회지
    • /
    • 제5권2호
    • /
    • pp.51-57
    • /
    • 1991
  • 불규칙 해상에서 선박의 큰 횡요각의 예측이 중요한 과제로 대두 되고 있다. 본 논문에서는 통계적 해석에 의한 이의 예측 방법을 제시한다. 즉 주어진 비 선형 횡요운동 방정식으로 부터 배의 횡요각과 각속도의 결합 확률 밀도 함수를 구하는 방법을 도입하고 각종 계수들의 값의 변화에 따른 예측 결과를 다른 논문에서 제시한 시뮬레이션 결과와 비교하였다.

  • PDF