• Title/Summary/Keyword: 통계적 방법

Search Result 3,727, Processing Time 0.029 seconds

스마트폰 음성 통신용 음성 검출 기술

  • Kim, Sang-Gyun;Jang, Jun-Hyeok
    • Information and Communications Magazine
    • /
    • v.29 no.4
    • /
    • pp.10-14
    • /
    • 2012
  • 본고에서는 스마트폰 환경에서 음성 통신에 필요한 가변 전송률 음성 부호화기를 위한 음성 검출 기술을 알아본다. 소개할 음성 검출 기술은 통계적 모델(statistical model)을 기반으로 한 우도비 테스트(likelihood ratio test, LRT)를 이용하여 음성 존재 여부를 판단하는 결정법을 유도한다. 이후 통계적 모델을 기반으로 한 음성 검출 방법의 신뢰도를 높이기 위해 새로운 방법들이 연구되었으며 최근까지 연구가 진행 중인 통계적 모델 기반의 음성 검출 방법을 소개한다.

Statistical estimation of forest fire risk considering spatial autocorrelation (공간상관성을 고려한 산불발생위험의 통계적 추정)

  • Kwak, Han-Bin;Lee, Woo-Kyun;Lee, Si-Young;Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo;Lee, Byung-Doo
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.93-94
    • /
    • 2010
  • 본 연구는 공간통계적 방법을 이용하여 산불발생의 위험도를 통계적으로 예측하고자 하였다. 연구 재료는 전국에서 발생한 1991년부터 2008년까지 산불발생 위치자료를 이용하였다. 점사상을 양적데이터로 전환하기 위해 전국을 공간격자로 구성하여 격자형 자료화 하여 사용하였다. 전국산불 발생위치를 산불발생위치들 간의 공간상관성을 고려하여 일반적인 통계모형에 공간통계적인 기법을 더하여 산불발생의 위치를 더욱 정확하게 추정하고자 하였다. 이를 위해 회귀모형과 공간모형의 혼합모형의 한 방법인 regression kriging 방법을 적용하였다. 그 결과 공간상관성을 고려한 공간통계적 방법은 산불발생의 공간적 군집을 더욱 정확하게 예측할 수 있었다.

  • PDF

Intuitive Quasi-Eigenfaces for Facial Animation (얼굴 애니메이션을 위한 직관적인 유사 고유 얼굴 모델)

  • Kim, Ig-Jae;Ko, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • 블렌드 쉐입 기반 얼굴 애니메이션을 위해 기저 모델(Expression basis)을 생성하는 방법을 크게 두 가지로 구분하면, 애니메이터가 직접 모델링을 하여 생성하는 방법과 통계적 방법에 기초하여 모델링하는 방법이 있다. 그 중 애니메이터에 의한 수동 모델링 방법으로 생성된 기저 모델은 직관적으로 표정을 인식할 수 있다는 장점으로 인해 전통적인 키프레임 제어가 가능하다. 하지만, 표정 공간(Expression Space)의 일부분만을 커버하기 때문에 모션데이터로부터의 재복원 과정에서 많은 오차를 가지게 된다. 반면, 통계적 방법을 기반으로 한 기저모델 생성 방법은 거의 모든 표정공간을 커버하는 고유 얼굴 모델(Eigen Faces)을 생성하므로 재복원 과정에서 최소의 오차를 가지지만, 시각적으로 직관적이지 않은 표정 모델을 만들어 낸다. 따라서 본 논문에서는 수동으로 생성한 기저모델을 유사 고유 얼굴 모델(Quasi-Eigen Faces)로 변형하는 방법을 제시하고자 한다. 결과로 생성되는 기저 모델은 시각적으로 직관적인 얼굴 표정을 유지하면서도 통계적 방법에 의한 얼굴표정 공간의 커버 영역과 유사하도록 확장할 수 있다.

  • PDF

Postprocessing with statistical methods (통계적 방법에 의한 후처리)

  • Park, Jin-Woo;Lee, Il-Byung
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.518-526
    • /
    • 1994
  • 본 논문에서는 통계적 방법을 이용한 후처리기를 설계하고, 구현하여 평가하였다. 통계적인 방법은 처리 속도보다는 공간 효율을 높임으로써 후처리의 성능을 높일 수 있다는 가정에서, 후처리의 성능을 향상시키기 위해서 다음의 3가지 방법을 제안한다. 첫째, 전이 확률에서 중복 표현되는 정보를 정의하고, 제거할 수 있는 방법을 제안한다. 둘째, 정수인 순위값으로부터 실수인 전이 확률의 근사값을 추정해 냄으로써 공간 효율을 높일 수 있는 방법을 제안한다. 셋째, 위의 두가지 방법을 복합적으로 적용하여 공간 효율을 높은 오류 탐지와 오류 교정 방법을 제안한다.

  • PDF

Face Recognition Using Factorial Code Representation (Factorial Code 표현법을 이용한 얼굴 인식)

  • 이오영;최승진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.577-579
    • /
    • 2000
  • 얼굴인식에서 정보 이론적 접근방법은 얼굴 영상을 작은 기저 영상의 집합으로 분해하는 것을 기초로 한다. 가장 많이 쓰이고 있는 방법은 PCA를 기반으로 하는 eigenface 방법이다. PCA를 기반으로 하는 방법은 데이터의 2차 통계적 구조만을 고려하므로 화소 사이의 고차 통계적 의존성은 고려되지 않는다. Factorial code 표현법은 효과적인 정보 표현의 좋은 방법으로 알려져 있고 이것은 ICA와 밀접한 관련이 있다. Factorial code 표현법은 eigenface 방법과 비교할 때 중요한 정보가 포함되어 있는 데이터의 고차 통계적 구조도 고려되어 더욱 효과적인 정보 표현을 기대할 수 있다. 이 논문에서는 PCA를 이용하여 차원을 줄이고 찾아낸 특징 공간에 Factorial code 표현법을 적용했다. 그리고 얼굴 인식에 있어서 Factorial code 표현법이 eigenface 방법보다 성능이 우수함을 보였다. 제안한 방법의 우수한 성능을 모의실험을 통하여 입증했다.

  • PDF

Regression models based on cumulative data for forecasting of new product (신제품 수요예측을 위하여 누적자료를 활용한 회귀모형에 관한 연구)

  • Park, Sang-Gue;Oh, Jung-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.117-124
    • /
    • 2009
  • If time series data with seasonal effect exist, various statistical models like winters for successful forecasts could be used. But if the data are not enough to estimate seasonal effect, not much methods are available. This paper proposes the statistical forecasting method based on cumulative data when the data are not enough to estimate seasonal effect. We apply this method to real cosmetic sales data and show its better performance over moving average method.

  • PDF

Statistical Matching Techniques Using the Robust Regression Model (로버스트 회귀모형을 이용한 자료결합방법)

  • Jhun, Myoung-Shic;Jung, Ji-Song;Park, Hye-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.981-996
    • /
    • 2008
  • Statistical matching techniques whose aim is to achieve a complete data file from different sources. Since the statistical matching method proposed by Rubin (1986) assumes the multivariate normality for data, using this method to data which violates the assumption would involve some problems. This research proposed the statistical matching method using robust regression as an alternative to the linear regression. Furthermore, we carried out a simulation study to compare the performance of the robust regression model and the linear regression model for the statistical matching.

통계적 그래픽스 도구로서의 정다각기둥평행좌표그림

  • Jang, Dae-Heung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.175-180
    • /
    • 2005
  • 탐색적자료분석을 위한 도구로서 그래픽 방법들을 자주 쓰게 되는 데 이러한 그래픽 방법 중 평행좌표그림을 대상으로 이 방법을 확장하여 볼 수 있다. 이러한 확장된 그림인 정다각기둥평행좌표그림은 탐색적자료분석 도구로서 유용하게 쓰일 수 있다.

  • PDF

Statistical methods for Edge Detection in Images (영상에서 에지 검출을 위한 통계적 방법)

  • 임동훈;박은희
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.515-523
    • /
    • 2000
  • In this paper we detect edges using stutistical methods of the change-point problem. For this, we perform the hypothesis testing for differences in gray levels to see whether any $n\timesn$ subimage contains edge segments. The proposed method based on the twosample Kolmogorov-Smirnov test is introduced and the likelihood ratio test and the \VolfeSchechtman test for change-point problem arc also applied for edge detection. \Ve perform the experimental study to assess the performance of these methods in both noisy and uncontaminated sample noises.

  • PDF

수량화 분석과 AHP를 이용한 산사태 예측모형 개발

  • Nam, Eun-Mi;Jun, Kyoung-Ho;Yu, Hyu-Kyong;Na, Jong-Hwa
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.114-119
    • /
    • 2009
  • 본 논문에서는 수량화 방법과 AHP(Analytic Hierarchy Process) 기법을 사용하여 산사태 발생에 대한 통계적 예측모형을 구축하는데 목적이 있다. 수량화(Quantification) 방법은 질적변수에 수량을 부여하는 통계적 방법으로, 기 조사된 자료에 기반하여 분석을 수행하는 방법이다. 본 논문에서는 서구의 다변량분석 기법인 정준상관분석의 결과를 토대로 수량화 과정을 구체적으로 제안한다. 데이터에 기반한 수량화 방법과는 달리 AHP(Analytic Hierarchy Process) 기법은 일종의 다기준 의사결정을 위해 사용되는 기법으로, 설문자료에 기반한 분석법이다. 실제자료에 대한 분석으로 산사태 발생여부를 측정한 자료(한국지질자원연구원 제공)와 전문가 설문을 통해 수집된 자료를 이용하였다. 이들 자료에 대해 수량화 분석과 AHP분석을 통해 산사태 발생여부를 예측할 수 있는 두 종류의 평가표와 함께 로지스틱 회귀를 통한 통계적 예측모형을 개발하였으며, 두 모형간의 성능비교와 안정성 평가를 수행하였다.

  • PDF