본고에서는 스마트폰 환경에서 음성 통신에 필요한 가변 전송률 음성 부호화기를 위한 음성 검출 기술을 알아본다. 소개할 음성 검출 기술은 통계적 모델(statistical model)을 기반으로 한 우도비 테스트(likelihood ratio test, LRT)를 이용하여 음성 존재 여부를 판단하는 결정법을 유도한다. 이후 통계적 모델을 기반으로 한 음성 검출 방법의 신뢰도를 높이기 위해 새로운 방법들이 연구되었으며 최근까지 연구가 진행 중인 통계적 모델 기반의 음성 검출 방법을 소개한다.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2010.09a
/
pp.93-94
/
2010
본 연구는 공간통계적 방법을 이용하여 산불발생의 위험도를 통계적으로 예측하고자 하였다. 연구 재료는 전국에서 발생한 1991년부터 2008년까지 산불발생 위치자료를 이용하였다. 점사상을 양적데이터로 전환하기 위해 전국을 공간격자로 구성하여 격자형 자료화 하여 사용하였다. 전국산불 발생위치를 산불발생위치들 간의 공간상관성을 고려하여 일반적인 통계모형에 공간통계적인 기법을 더하여 산불발생의 위치를 더욱 정확하게 추정하고자 하였다. 이를 위해 회귀모형과 공간모형의 혼합모형의 한 방법인 regression kriging 방법을 적용하였다. 그 결과 공간상관성을 고려한 공간통계적 방법은 산불발생의 공간적 군집을 더욱 정확하게 예측할 수 있었다.
블렌드 쉐입 기반 얼굴 애니메이션을 위해 기저 모델(Expression basis)을 생성하는 방법을 크게 두 가지로 구분하면, 애니메이터가 직접 모델링을 하여 생성하는 방법과 통계적 방법에 기초하여 모델링하는 방법이 있다. 그 중 애니메이터에 의한 수동 모델링 방법으로 생성된 기저 모델은 직관적으로 표정을 인식할 수 있다는 장점으로 인해 전통적인 키프레임 제어가 가능하다. 하지만, 표정 공간(Expression Space)의 일부분만을 커버하기 때문에 모션데이터로부터의 재복원 과정에서 많은 오차를 가지게 된다. 반면, 통계적 방법을 기반으로 한 기저모델 생성 방법은 거의 모든 표정공간을 커버하는 고유 얼굴 모델(Eigen Faces)을 생성하므로 재복원 과정에서 최소의 오차를 가지지만, 시각적으로 직관적이지 않은 표정 모델을 만들어 낸다. 따라서 본 논문에서는 수동으로 생성한 기저모델을 유사 고유 얼굴 모델(Quasi-Eigen Faces)로 변형하는 방법을 제시하고자 한다. 결과로 생성되는 기저 모델은 시각적으로 직관적인 얼굴 표정을 유지하면서도 통계적 방법에 의한 얼굴표정 공간의 커버 영역과 유사하도록 확장할 수 있다.
Annual Conference on Human and Language Technology
/
1994.11a
/
pp.518-526
/
1994
본 논문에서는 통계적 방법을 이용한 후처리기를 설계하고, 구현하여 평가하였다. 통계적인 방법은 처리 속도보다는 공간 효율을 높임으로써 후처리의 성능을 높일 수 있다는 가정에서, 후처리의 성능을 향상시키기 위해서 다음의 3가지 방법을 제안한다. 첫째, 전이 확률에서 중복 표현되는 정보를 정의하고, 제거할 수 있는 방법을 제안한다. 둘째, 정수인 순위값으로부터 실수인 전이 확률의 근사값을 추정해 냄으로써 공간 효율을 높일 수 있는 방법을 제안한다. 셋째, 위의 두가지 방법을 복합적으로 적용하여 공간 효율을 높은 오류 탐지와 오류 교정 방법을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.577-579
/
2000
얼굴인식에서 정보 이론적 접근방법은 얼굴 영상을 작은 기저 영상의 집합으로 분해하는 것을 기초로 한다. 가장 많이 쓰이고 있는 방법은 PCA를 기반으로 하는 eigenface 방법이다. PCA를 기반으로 하는 방법은 데이터의 2차 통계적 구조만을 고려하므로 화소 사이의 고차 통계적 의존성은 고려되지 않는다. Factorial code 표현법은 효과적인 정보 표현의 좋은 방법으로 알려져 있고 이것은 ICA와 밀접한 관련이 있다. Factorial code 표현법은 eigenface 방법과 비교할 때 중요한 정보가 포함되어 있는 데이터의 고차 통계적 구조도 고려되어 더욱 효과적인 정보 표현을 기대할 수 있다. 이 논문에서는 PCA를 이용하여 차원을 줄이고 찾아낸 특징 공간에 Factorial code 표현법을 적용했다. 그리고 얼굴 인식에 있어서 Factorial code 표현법이 eigenface 방법보다 성능이 우수함을 보였다. 제안한 방법의 우수한 성능을 모의실험을 통하여 입증했다.
Journal of the Korean Data and Information Science Society
/
v.20
no.1
/
pp.117-124
/
2009
If time series data with seasonal effect exist, various statistical models like winters for successful forecasts could be used. But if the data are not enough to estimate seasonal effect, not much methods are available. This paper proposes the statistical forecasting method based on cumulative data when the data are not enough to estimate seasonal effect. We apply this method to real cosmetic sales data and show its better performance over moving average method.
Statistical matching techniques whose aim is to achieve a complete data file from different sources. Since the statistical matching method proposed by Rubin (1986) assumes the multivariate normality for data, using this method to data which violates the assumption would involve some problems. This research proposed the statistical matching method using robust regression as an alternative to the linear regression. Furthermore, we carried out a simulation study to compare the performance of the robust regression model and the linear regression model for the statistical matching.
In this paper we detect edges using stutistical methods of the change-point problem. For this, we perform the hypothesis testing for differences in gray levels to see whether any $n\timesn$ subimage contains edge segments. The proposed method based on the twosample Kolmogorov-Smirnov test is introduced and the likelihood ratio test and the \VolfeSchechtman test for change-point problem arc also applied for edge detection. \Ve perform the experimental study to assess the performance of these methods in both noisy and uncontaminated sample noises.
Proceedings of the Korea Society for Industrial Systems Conference
/
2009.05a
/
pp.114-119
/
2009
본 논문에서는 수량화 방법과 AHP(Analytic Hierarchy Process) 기법을 사용하여 산사태 발생에 대한 통계적 예측모형을 구축하는데 목적이 있다. 수량화(Quantification) 방법은 질적변수에 수량을 부여하는 통계적 방법으로, 기 조사된 자료에 기반하여 분석을 수행하는 방법이다. 본 논문에서는 서구의 다변량분석 기법인 정준상관분석의 결과를 토대로 수량화 과정을 구체적으로 제안한다. 데이터에 기반한 수량화 방법과는 달리 AHP(Analytic Hierarchy Process) 기법은 일종의 다기준 의사결정을 위해 사용되는 기법으로, 설문자료에 기반한 분석법이다. 실제자료에 대한 분석으로 산사태 발생여부를 측정한 자료(한국지질자원연구원 제공)와 전문가 설문을 통해 수집된 자료를 이용하였다. 이들 자료에 대해 수량화 분석과 AHP분석을 통해 산사태 발생여부를 예측할 수 있는 두 종류의 평가표와 함께 로지스틱 회귀를 통한 통계적 예측모형을 개발하였으며, 두 모형간의 성능비교와 안정성 평가를 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.