• Title/Summary/Keyword: 통계적 문장 생성

Search Result 23, Processing Time 0.016 seconds

Development of Subcategorization Dictionary for the Disambiguation Korean Language Analysis (한국어 분석의 중의성 해소를 위한 하위범주화 사전 구축)

  • Lee, Su-Seon;Park, Hyun-Jae;Woo, Yo-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.257-264
    • /
    • 1999
  • 자연언어 처리에 있어 문장의 성분 구조를 파악하는 통사적 해석에서는 애매성 있는 결과가 많이 생성된다. 한국어의 경우 어순 등의 통사적 특성뿐 아니라 상황과 의미, 문맥이 문장의 분석에 더 중요한 역할을 하기 때문에 문맥 자유 문법에 의한 접근 방법만으로는 중의적 구조의 해결이 어렵다. 이는 또한 의미 분석시 애매성을 증가시키는 원인이 된다. 이러한 통사적, 의미적 중의성 해결을 위해 용언 중심의 하위범주화 사전을 구축하였다. 본 논문에서는 용언에 따라 제한될 수 있는 하위범주 패턴을 정의하고 패턴에 따라 하위범주 사전을 구축하였다. 하위범주화 사전에는 명사의 시소러스와 정합하여 보어를 선택 제한(Selectional Restriction)할 수 있도록 용언과 명사와의 의미적 연어 관계에 따라 의미마커를 부여했다. 말뭉치를 통해 수집된 용언 12,000여개를 대상으로 25,000여개의 하위범주 패턴을 구축하였고 이렇게 구축한 하위범주화 사전이 120,000여 명사에 대한 의미를 갖고 있는 계층 시소러스 의미 사전과 연동하도록 하였다. 또한 논문에서 구현된 하위범주화 사전이 구문과 어휘의 중의성을 어느 정도 해소하는지 확인하기 위해 반자동적으로 의미 태깅(Sense Tagging)된 2만여 문장의 말뭉치를 통해 검증 작업을 수행하고, 의존관계와 어휘의 의미를 포함하고 있는 말뭉치에 하위범주 패턴이 어느정도 정합되는지를 분석하여, 하위범주 패턴과 말뭉치의 의존관계만 일치하는 경우와 어휘의 의미까지 일치하는 경우에 대해 평가한다. 이 과정에서 하위범주 패턴에 대한 빈도 정보나, 연어 정보를 수집하여 데이터베이스에 포함시키고, 각 의미역과 용언의 통계적 공기 정보 등을 추출하는 방법도 제시하고자 한다.을 입증하였다.적응에 문제점을 가지기도 하였다. 본 연구에서는 그 동안 계속되어 온 한글과 한잔의 사용에 관한 논쟁을 언어심리학적인 연구 방법을 통해 조사하였다. 즉, 글을 읽는 속도, 글의 의미를 얼마나 정확하게 이해했는지, 어느 것이 더 기억에 오래 남는지를 측정하여 어느 쪽의 입장이 옮은 지를 판단하는 것이다. 실험 결과는 문장을 읽는 시간에서는 한글 전용문인 경우에 월등히 빨랐다. 그러나. 내용에 대한 기억 검사에서는 국한 혼용 조건에서 더 우수하였다. 반면에, 이해력 검사에서는 천장 효과(Ceiling effect)로 두 조건간에 차이가 없었다. 따라서, 본 실험 결과에 따르면, 글의 읽기 속도가 중요한 문서에서는 한글 전용이 좋은 반면에 글의 내용 기억이 강조되는 경우에는 한자를 혼용하는 것이 더 효율적이다.이 높은 활성을 보였다. 7. 이상을 종합하여 볼 때 고구마 끝순에는 페놀화합물이 다량 함유되어 있어 높은 항산화 활성을 가지며, 아질산염소거능 및 ACE저해활성과 같은 생리적 효과도 높아 기능성 채소로 이용하기에 충분한 가치가 있다고 판단된다.등의 관련 질환의 예방, 치료용 의약품 개발과 기능성 식품에 효과적으로 이용될 수 있음을 시사한다.tall fescue 23%, Kentucky bluegrass 6%, perennial ryegrass 8%) 및 white clover 23%를 유지하였다. 이상의 결과를 종합할 때, 초종과 파종비율에 따른 혼파초지의 건물수량과 사료가치의 차이를 확인할 수 있었으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract

  • PDF

A Parser of Definitions in Korean Dictionary based on Probabilistic Grammar Rules (확률적 문법규칙에 기반한 국어사전의 뜻풀이말 구문분석기)

  • Lee, Su-Gwang;Ok, Cheol-Yeong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.48-460
    • /
    • 2001
  • 국어사전의 뜻풀이말은 표제어의 의미를 기술할 뿐만 아니라, 상위/하위개념, 부분-전체개념, 다의어, 동형이의어, 동의어, 반의어, 의미속성 등의 많은 의미정보를 내재하고 있다. 본 연구는 뜻풀이말에서 다양한 의미정보를 획득을 위한 기본적인 도구로서 국어사전의 뜻풀이말 구문분석기를 구현하는 것을 목적으로 한다. 이를 위해서 우선 국어사전의 뜻풀이말을 대상으로 일정한 수준의 품사 및 구문 부착 말 뭉치를 구축하고, 이 말뭉치들로부터 품사 태그 중의성 어절의 빈도 정보와 통계적 방법에 기반한 문법규칙과 확률정보를 자동으로 추출한다. 본 연구의 뜻풀이말 구문분석기는 이를 이용한 확률적 차트파서이다. 품사 태그 중의성 어절의 빈도 정보와 문법규칙 및 확률정보는 파싱 과정의 명사구 중의성을 해소한다. 또한, 파싱 과정에서 생성되는 노드의 수를 줄이고 수행 속도를 높이기 위한 방법으로 문법 Factoring, Best-First 탐색 그리고 Viterbi 탐색의 방법을 이용한다. 문법규칙의 확률과 왼쪽 우선 파싱 그리고 왼쪽 우선 탐색 방법을 사용하여 실험한 결과, 왼쪽 우선 탐색 방식과 문법확률을 혼용하는 방식이 가장 정확한 결과를 보였으며 비학습 문장에 대해 51.74%의 재현률과 87.47%의 정확률을 보였다.

  • PDF

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.