• Title/Summary/Keyword: 톱 절단법

Search Result 2, Processing Time 0.02 seconds

A Study on the Comparative Evaluation of Welding Residual Stresses of Pipes in Power Plants using Saw-rutting and Indentation Methods (톱절단법과 연속압입시험법을 이용한 발전소용 배관의 용접 잔류응력 비교평가에 관한 연구)

  • Choi, Won-Doo;Lee, Sang-Guk;Lee, Young-Ho;Gil, Doo-Song
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.328-333
    • /
    • 2003
  • It has been widely recognized that the residual stress of the weldment affect the integrity of steel structures and cause an initiation of crack in the welded regions. Since the power plants adopt a variety of welding processes, it is necessary to know the distribution and magnitude of residual stresses. This paper has attempted to investigate the validity of the saw cutting method and the indentation method to measure the residual stresses in the steel plates. The residual stresses in the specimens of hot reheater pipes, cold reheater pipes and feed water lines in power plants were determined by the saw cutting method and the indentation method. The data were compared and reviewed for the validity of the methods.

Ge-doped Boro-Phospho-Silicate Glass Micro-lens Array Produced by Thermal Reflow (가열용융 방법에 의한 Ge-BPSG 마이크로렌즈 어레이 제작)

  • Jeong, Jin-ho;Oh, Jin-Gyeong;Choi, Jun-Seok;Choi, Gi-Seon;Lee, Hyeong-Jong;Bae, Byeong-Seong
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.340-344
    • /
    • 2005
  • Microlens cells of Ge-doped BPSG (Boro-Phospho-Silicate Glass) are fabricated by dicing the film produced by FHD (Flame Hydrolysis Deposition). Microlens arrays of $53.4{\mu}m$ square unit are produced by the thermal reflow of the diced unit cells at $1200^{\circ}C$. The gap between the microlenses was about $70{\mu}m,$ and the thickness of the produced lens was about $28.4{\mu}m$. We analyzed the reflowed shape of the microlens cell by an image-process technique, and the focal length was about $62.2{\mu}m$. This method of fabricating a microlens is simple and inexpensive compared to the conventional method using the photolithographic process. Also, the control of the radius of curvature of the microlens is easier and a more precise microlens way of various types can be fabricated using this method.