• Title/Summary/Keyword: 토크 매칭

Search Result 5, Processing Time 0.024 seconds

Speed Controller Design for BLDC Motors Using Robust PID Control (강인 PID 제어를 이용한 BLDC 모터의 속도제어 시스템 설계)

  • Kim, In-Soo;Lee, Young-Jin;Park, Sung-Jun;Park, Han-Woong;Lee, Man-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2658-2660
    • /
    • 2000
  • 본 논문은 주파수역에서의 모델매칭을 이용하여 강인한 성능의 PID 제어기 튜닝법을 제안하였다. 이를 이용하여 부하토크 외란에도 강인한 성능의 BLDC 모터의 속도제어기를 설계하였다. 부하토크 외란이 존재하여도 주어진 기준명령을 강인하게 추종하도록 $H_{\infty}$ 제어를 이용하여 속도제어기를 설계한 후, 설계할 PID 제어계의 루프 전달함수와 설계된 $H_{\infty}$ 제어계의 루프 전달함수간의 오차가 주파수역에서 최소가 되도록 PID 제어기 파라미터를 튜닝하였다. BLDC 모터의 속도제어 시뮬레이션을 통하여 설계된 강인 PID 제어기의 성능을 평가하였다.

  • PDF

A Study on the Evaluation Method of the Operation Stability of a Torque Converter Mounted on Industrial Vehicle (산업차량용 토크컨버터의 작동 안정성 평가 방법에 대한 연구)

  • Kim, Beom-Soo;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • This paper presents the induced mathematical modeling equations for evaluating the operation stability with automatic transmission of heavy duty vehicle. This theoretical approach indicates that linearized governing equations of system can be converted into eigen-value problems. if the eigen-value has positive number, we can predict the engine operating point locates an unstable operating region. To be a stable state, the unstable operating point diverges toward a stable point which is able to maintain uniform velocity. Based on the previous theoretical analysis, we carry out dynamic simulation to show the behavior of engine operating point and torque converter in transient state. As a result of the dynamic simulation, the suggested theoretical method is found to be reasonable for evaluating the operation stability of a torque converter. In addition, the numerical results explain the engine stops and fluctuating phenomenon in reality.

1-Dimensional Performance Analysis of Diesel Engine (디젤엔진의 일차원 성능해석)

  • Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.671-673
    • /
    • 2012
  • 본 연구에서는 상용 엔진 해석프로그램인 GT-Power를 이용하여 디젤엔진의 성능을 개선 개발을 위한 일차원 성능해석 모델을 개발하였다. 개발된 일차원 엔진 성능모델을 통하여 엔진의 출력, 토크 및 연비등을 검토하였다. 향후 터보챠져를 장착한 엔진개발에 사용이 가능하도록 터보매칭을 할 수 있는 모델을 추가하였으며, 향후 디젤엔진의 실험결과와 비교를 통하여 엔진 모델을 지속적으로 보완할 예정이다.

  • PDF

System-level Analysis of a Fan-motor Assembly for Vacuum Cleaner (진공청소기용 팬-모터 어셈블리의 시스템-레벨 분석)

  • Park, Chang-Hwan;Park, Kyung-Hyun;Chang, Kyung-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.5-14
    • /
    • 2017
  • A fan-motor assembly in a vacuum cleaner is analyzed through system-level analysis method. This system consisted of three components, a fan, motor, and the flow resistance of the motor, or of the vacuum cleaner. System-level analysis method is characterized by the combination of torque matching at a constant throttling condition between the fan and the motor and the pressure drop at a constant flow rate due to the flow resistance of the motor, or of the vacuum cleaner. The performance characteristics of the fan-motor assembly and the vacuum cleaner system could be predicted over the whole range of operation, based on the characteristics of each component. The predicted performance of the vacuum cleaner system through system-level analysis agreed well with the experimental results within 4.5% difference of pressure and 6% difference of the efficiency. The effect of flow resistance of a motor is investigated and it is found that the efficiency decrease of fan-motor assembly at the constant flow rate due to the flow resistance of a motor is determined by the flow resistance ratio(FRR), which is defined as a ratio of flow resistance of motor and the flow resistance of a constant throttling condition of a given point. The fan-motor assembly(S2 model) was modified to reduce the FRR from 9.0% to 2.4% and the experimental result shows that the efficiency of S2 model was improved by about 3% at best efficiency point.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.