• Title/Summary/Keyword: 토지이용/피복

Search Result 713, Processing Time 0.028 seconds

Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map (국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신)

  • Soungki, Lee;Seok Keun, Choi;Sintaek, Noh;Noyeol, Lim;Juweon, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.267-275
    • /
    • 2015
  • Those land cover maps have widely been used in various fields, such as environmental studies, military strategies as well as in decision-makings. This study proposes a method to extract training data, automatically and classify the cover using ingle satellite images and national land cover maps, provided by the Ministry of Environment. For this purpose, as the initial training data, those three were used; the unsupervised classification, the ISODATA, and the existing land cover maps. The class was classified and named automatically using the class information in the existing land cover maps to overcome the difficulty in selecting classification by each class and in naming class by the unsupervised classification; so as achieve difficulty in selecting the training data in supervised classification. The extracted initial training data were utilized as the training data of MLC for the land cover classification of target satellite images, which increase the accuracy of unsupervised classification. Finally, the land cover maps could be extracted from updated training data that has been applied by an iterative method. Also, in order to reduce salt and pepper occurring in the pixel classification method, the MRF was applied in each repeated phase to enhance the accuracy of classification. It was verified quantitatively and visually that the proposed method could effectively generate the land cover maps.

Neural Network Based Land Cover Classification Technique of Satellite Image for Pollutant Load Estimation (신경망 기반의 오염부하량 산정을 위한 위성영상 토지피복 분류기법)

  • Park, Sang-Young;Ha, Sung-Ryong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.1-4
    • /
    • 2001
  • The classification performance of Artificial Neural Network (ANN) and RBF-NN was compared for Landsat TM image. The RBF-NN was validated for three unique landuse types (e.g. Mixed landuse area, Cultivated area, Urban area), different input band combinations and classification class. The bootstrap resampling technique was employed to estimate the confidence intervals and distribution for unit load, The pollutant generation was varied significantly according to the classification accuracy and percentile unit load applied. Especially in urban area, where mixed landuse is dominant, the difference of estimated pollutant load is largely varied.

  • PDF

Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model (심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류)

  • MOON, Gab-Su;KIM, Kyoung-Seop;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.252-262
    • /
    • 2020
  • In Remote Sensing, a machine learning based SVM model is typically utilized for land cover classification. And study using neural network models is also being carried out continuously. But study using high-resolution imagery of KOMPSAT is insufficient. Therefore, the purpose of this study is to assess the accuracy of land cover classification by neural network models using high-resolution KOMPSAT-3 satellite imagery. After acquiring satellite imagery of coastal areas near Gyeongju City, training data were produced. And land cover was classified with the SVM, ANN and DNN models for the three items of water, vegetation and land. Then, the accuracy of the classification results was quantitatively assessed through error matrix: the result using DNN model showed the best with 92.0% accuracy. It is necessary to supplement the training data through future multi-temporal satellite imagery, and to carry out classifications for various items.

The Land-cover Changes and Pattern Analysis in the Tidal Flats Using Post-classification Comparison Method: The Case of Taean Peninsula Region (선분류 후비교법을 이용한 간석지의 토지피복 변화 및 패턴 분석 - 태안반도 지역을 사례로 -)

  • Jang, Dong-Ho;Kim, Chan-Soo;Park, Ji-Hoon
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.2
    • /
    • pp.275-292
    • /
    • 2010
  • This study investigated the land-cover changes in the tidal flat of the Taean peninsula due to man-made environmental changes between 1972 and 2008, through time-series analysis based on a modified post-classification comparison method and multi-temporal satellite images. The analysis revealed that the land-cover of the tidal flat has changed from tidal flat to wetland and from wetland to paddy field between 1972 and 2008. Also, the pattern of detailed land-cover changes is as follows: tidal flat to wetland; lake and saltpan to bare land and paddy field. The accurate classification of each image is needed for the application of the post-classification comparison method. The overall accuracy of the classified images was found to be 95.33% on average, and the Kappa value was 0.941 on average.

Land cover Classification Method using Harmonic Modeling (하모닉 모형을 이용한 토지피복 분류 방법론)

  • Jung, Myunghee;Lee, Sang-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.407-408
    • /
    • 2019
  • 토지 피복과 관련된 지표면 파라미터는 일반적으로 지표에서 감지되어 위성영상에 나타난 많은 물리적 프로세스에 의존하며 계절적 주기성을 갖는 시간적 변화를 보인다. 하모닉 모형은 복잡한 파형을 정현파 성분의 합으로 표시함으로써 레벨, 주기, 진폭 및 위상 요소를 통한 변동을 분석함으로써 표면에서 관찰되는 계절적 변화 패턴을 모델링하는 데 적합한 모형이다. 본 연구에서는 MODIS NDVI (Normalized Difference Vegetation Index) 시계열 자료를 이용하여 하모닉 패턴의 특성에 따라 토지 피복을 분류하는 방법론을 제안하였다.

  • PDF

A Study on the Landcover Classification using Band Ratioing Data of Landsat-TM (Landsat-TM의 밴드비 연산데이터를 이용한 토지피복분류에 관한 연구)

  • Kwon, Bong-Kyum;Yamada, Kiyoshi;Niren, Takaaki;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.80-91
    • /
    • 2003
  • In this research, re-using band ratio data was proposed and examined as a method of raising the accuracy in landcover classification which is using satellite data.In order to determine the band which is used to calculation in the classified item, the six bands except the band 6 were combined with the band in which combination is possible and the landcover classification by MLC of supervised classification was carried out. In the result of landcover classification which is combined with forty nine combination, Two bands which were mostly used by band combination in the accuracy belonged inside the 10th place of a higher rank were selected and also calculated. landcover classification were performed again after the calculation result had been recombinated from the research. In addition, the new landcover classification result was compared and examined with the landcover classification using the old data. From the result of which was compared and examined the new landcover classification data recombinated calculation result with landcover classification using the original data, The classification accuracy of the new landcover classification data recombinated calculation result became low in ground but became improved in the all class. Specially The accuracy to urban area is very improved. therefore, it determined that reusing band ratio data is very useful when we need to analyze landcover classification and land information to urban area after that.

  • PDF

Methodology of ground-truthing for land cover mapping using remote sensor data (원격탐사 영상자료를 이용한 토지피복도 제작을 위한 지상자료 획득 방법)

  • Lee, Kyu-Sung;Kim, Sun-Hwa;Shin, Jung-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.33-36
    • /
    • 2007
  • 토지피복분류, 식생분류, 식물피복도 분류 등 원격탐사 영상자료의 주된 이용분야에서 지상자료는 매우 중요한 부분을 차지하고 있다. 가령 감독분류를 위한 training site 에 대한 측정이나 또는 분류 정확도 검증을 위한 측면에서도 지상측정은 반드시 필요한 부분이다. 본 논문에서는 피복분류 과정에서 반드시 필요한 지상측정을 위한 표본조사에서 유의하여야 할 통계학적 측면에서 고려해야 할 사항을 검토한다.

  • PDF

Impervious Surface Estimation Area of Seom River Basin using Satellite Imagery and Sub-pixel Classifier (위성영상과 Sub-pixel 분류에 의한 섬강유역의 불투수율 추정)

  • Na, Sang-Il;Park, Jong-Hwa;Shin, Hyoung-Sub;Park, Jin-Ki;Baek, Shin-Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.744-744
    • /
    • 2012
  • 불투수층은 자연적인 침투를 허용하지 않는 인위적인 토지피복상태로 도시화율 추정 및 유역의 환경변화 정도를 분석하기 위한 척도로 사용되어 왔다. 특히, 수문학적 관점에서 불투수층은 단기 유출현상에 큰 영향을 끼치는 요소로 불투수율이 증가할수록 침투량이 감소하여 첨두유출량은 증가하고 도달시간은 짧아진다. 최근에는 급속한 도시화로 인해 불투수층의 영향이 더욱 커짐에 따라 불투수율의 추정에 대한 필요성이 증가하고 있다. 현재까지 위성영상을 이용한 불투수층의 추정은 고해상도 영상을 이용하여 피복분류를 수행하였다. 즉, 분류된 토지피복에 근거하여 불투수율을 산술적으로 계산하거나 분광혼합기법 및 회귀 트리기법 등 다양한 방법에 적용되어 왔다. 본 연구에서는 Sub-pixel 분류기법을 위성영상에 적용하여 섬강유역의 불투수율을 추정하고자 한다. Sub-pixel 분류는 기존 분류기법들이 다양한 토지피복이 혼합된 화소에 대해서도 가장 비중이 높은 토지피복 하나로 분류하던 것을 개선한 방법으로 fuzzy 이론을 적용하여 최소 20% 이상의 비율을 점유하는 항목 모두를 구분하여 분류하는 기법이다. 이를 위해 섬강유역의 Landsat TM 영상을 수집하고 환경부의 토지피복도와 지질도를 참조하여 트레이닝 자료를 수집하였다. 또한 결과에 영향을 미칠 수 있는 구름은 전처리를 통하여 제거하고 수집된 트레이닝 자료에 Sub-pixel 분류기법을 적용하여 섬강유역의 불투수율을 공간분포도로 작성하였다.

  • PDF

Land Cover Classification of a Wide Area through Multi-Scene Landsat Processing (다량의 Landsat 위성영상 처리를 통한 광역 토지피복분류)

  • 박성미;임정호;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.189-197
    • /
    • 2001
  • Generally, remote sensing is useful to obtain the quantitative and qualitative information of a wide area. For monitoring earth resources and environment, land cover classification of remotely sensed data are needed over increasingly larger area. The objective this study is to propose the process for land cover classification method over a wide area using multi-scene satellite data. Land cover of Korean peninsula was extracted from a Landsat TM and ETM+ mosaic created from 23 scenes at 100-meter resolution. Well-known techniques that used to general image processing and classification are applied to this wide area classification. It is expected that these process is very useful to promptly and efficiently grasp of small scale spatial information such as national territorial information.

Detection of Urban Expansion and Surface Temperature Change using Landsat Satellite Imagery (Landsat 위성영상을 이용한 도시확장 및 지표온도 변화 탐지)

  • Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.59-65
    • /
    • 2005
  • It is very important to detect land cover/land use change from the past and to use it for future urban plan. This paper investigated the application of Landsat satellite imagery for detecting urban growth and assessing its impact on surface temperature in the region. Land cover/land use change detection was carried out by using 30m resolution Landsat satellite images and hierarchial approach was introduced to detect more detail change on the changing area through high resolution aerial photos. Also, surface temperature according to land cover/land use was calculated from Landsat TM thermal infrared data and compared with real temperature to analyze the relationship between urban expansion and surface temperature. As a result, the urban expansion has raised surface radiant temperature in the urbanized area. The method using remote sensing data based on GIS was found to be effective in monitoring and analysing urban growth and in evaluating urbanization impact on surface temperature.

  • PDF