• Title/Summary/Keyword: 토양 용적밀도

Search Result 86, Processing Time 0.024 seconds

One Dimensional Heat Flow Equation Incorporated with the Vertical Water Flow in Paddy Soils I. An Analytical Solution and It's Application to Tow Different Paddy Soils with Different Percolation Rates (답토양(沓土壤)에 있어서 물 이동(移動)이 복합(複合)된 일차원(一次元) 열이동방정식(熱移動方程式)에 관(關)하여 I. 분석해(分析解)와 투수속도(透水速度)가 다른 두 답토양(沓土壤)에 대(對)한 적용(適用))

  • Jung, Yeong-Sang;Kim, Lee-Yul;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.179-184
    • /
    • 1982
  • To describe a mathematical heat transfer model in saturated paddy soils, an analytical solution of the heat flow equation incorporated with the heat transfer by mass flow of water was obtained under the assumptions: 1) the diurnal (or annual) changes in temperature at a depth follow harmonic curves, 2) the temperature at the infinite depth be constant and 3) the temperatures of soil and water at the one depth be identical. The calculation of thermal diffusivities of the soil is possible with the known values of the physical parameters of each component in the soil matrix (heat capacity, density and porosity), percolation rate and the minimum and maximum temperatures at two different depths. The calculated thermal diffusivities using the solution were $9.5cm^2/hr$ for the loam soil with the percolation rate of 0.88cm/day and $13.9cm^2/hr$ for the sandy loam soil with the percolation rate of 2.64 cm/day.

  • PDF

Effects of Barley Straw Application on Soil Physico-Chemical Properties and Nutrient Uptake in Rice Paddy Field of Double Cropping (벼 2모작 논에서 보릿짚 시용이 토양이화학성 및 양분흡수에 미치는 영향)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kang, Seung-Weon;Han, Sang-Soo;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.110-116
    • /
    • 2001
  • This experiment was carried out to investigate the effects of amount of nitrogen application with the barley straw application on the changes in soil physical and chemical properties. nutrient uptake and percentage recovery of chemical fertilizer N in the rice plant from 1997 to 1998. The soil physical properties, such as bulk density, hardness, porosity and gaseous phase were improved by barley straw application. There was also improvement or increment in the soil chemical properties, such as pH, organic matter, T-C. T-N, available $SiO_2$, exchangeable K and cation exchange capacity, but decrease in available $P_2O_5$. The $Fe^{+{+}}$ content in soil after barley straw application was high from tillering stage to panicle forming stage, but becoming lowered toward the heading stage, while $Mn^{+{+}}$ content was increased. N uptake with barley straw application was increased in the N $126kg\;ha^{-1}$ plot, but decreased in the N $141kg\;ha^{-1}$ plot. The uptake of fertilized N was continued longer in barley straw application than none-application plot. Percentage recovery of chemical fertilizer N in rice straw was around 1% at tillering stage, but was highly increasing till maximum tillering stage, while the recovery was generally low in barley straw application. Meanwhile, fertilizer P uptake in barley straw application was high, but potassium uptake was low at all different levels of N application.

  • PDF

Relative Contribution rate on Soil Physico-chemical Properties Related to Fruit Quality of 'Hongro' Apple (사과 '홍로' 품종의 과실 품질에 미치는 토양이화학성의 상대적 기여도)

  • Kim, Seung-Heui;Park, Seo-Jun;Han, Jeom-Wha;Cho, Jung-Gun;Choi, Hyeong-Suk;Lim, Tae-Jun;Yun, Hea-Keun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2012
  • This study was carried out to investigate the optimum soil environmental conditions of ten contents on production of high quality fruit in 'Hongro' apple. The soil and fruit characteristics were analyzed at total 60 orchards in major apple producing areas such as Chungju, Moonkyeung, Yeongju, Andong, Yeosan and Yeongcheon (10 orchards an area). The soil environmental factors affected fruit weight were the highest relative contribution in saturated hydraulic conductivity of 33.3%. The cation was 24.6%, the bulk density, soil texture and solid phase were also high as relative contribution. The fruit weight was influenced by soil physical properties more than soil chemical properties. The soil environmental factors affected sugar content were highest soil texture of 21.9%, and the CEC and bulk density were low as relative contribution. The fruit coloring was the highest relative contribution in phosphate of 55.9%. While saturated hydraulic conductivity and organic matter content were low. The coloring was influenced by soil chemical properties more than soil physical properties. Fruit coloring was high influenced over 70% by soil physical properties. Finally, relative contribution on fruit quality related with sugar content, fruit weight, and coloring were high influenced by cultivation layer depth of 25.8%, soil texture 22.2%, and soil pH of 21.0% but bulk density and solid phase were low relative contribution. The fruit growth and soil chemical properties in 'Hongro' apple were very closely related. Therefore, orchard soil management to produce high quality fruit was very importance drainage management and organic matter application. We concluded that scientific soil management is possible by quanlifiable of soil management factors.

Transport and Fate of Benzene in a Sandy Soil (사질토양에서의 Benzene의 이동성에 관한 연구)

  • 백두성;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 1999
  • Hydrocarbon compounds in vadose zone soils caused by adsorption onto the surfaces of solid particles are generally considered to show retardation effect. In this study, we investigated the retardation effect on the transport of Benzene in a sandy soil by conducting batch and column tests. The batch test was conducted by equilibrating dry soil mass with Benzene solutions of various initial concentrations. and by analyzing the concentrations of Benzene in initial and equilibrated solutions using HPLC. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used KCl and Benzene solutions with the concentration of 10 g/L and 0.88 g/L as a tracer, and injected them into the inlet boundary of the soil sample as a square pulse type respectively, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and HPLC. From the batch test, we obtained a distribution coefficient assuming that a linear adsorption isotherm exists and calculated the retardation factor based on the bulk density and porosity of the column sample. We also predicted the column BTC curve using the retardation factor obtained from the distribution coefficient and compared with the measured BTC of Benzene. The results of the column test showed that i) the peak concentration of Benzene was much smaller than that of KCl and ⅱ) the travel times of peak concentrations for the two tracers were more or less identical. These results indicate that adsorption of Benzene onto the sand panicles occurred during the pulse propagation but the retardation of Benzene caused by adsorption was not present in the studied soil. Comparison of the predicted with the measured BTC of Benzene resulted in a poor agreement due to the absence of the retardation phenomenon. The only way to describe the absolute decrease of Benzene concentration in the column leaching experiment was to introduce a decay or sink coefficient in the convection-dispersion equation (CDE) model to account for an irreversible sorption of Benzene in the aqueous phase.

  • PDF

Relationships between Soil Physico-chemical Properties and Topography in Jeonbuk Orchard Fields (지형에 따른 전북지역 과수원 토양의 물리화학적 특성)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.859-865
    • /
    • 2011
  • This study looked into 110 sites of orchard fields to investigate the relationships between the physical and chemical properties of soils, including heavy metal contents, and the topographic characteristics of the fields in Jeonbuk province. The topographic distribution of orchard fields in Jeonbuk province was local valley and fans, hilly and mountains, mountain foot slopes, alluvial plains, diluvium, and fluvio-marine deposits. Forty-six percent (46%) of total orchard fields were located in the hilly and mountains. Soil texture of the local valley and fans was mostly sandy clay loam, and the soil texture of other topographical sites were varied. Bulk density, porosity, and soil hardness were not different among the various topographic sites. The content of plant available water was the highest (19.5%) in the sites of diluvium. Soil pH, electrical conductivity (EC), and exchangeable $Mg^{2+}$ content were the highest in the sites of fluvio-marine deposits, whereas the contents of soil organic matter (SOM), available phosphorus, and exchangeable $Ca^{2+}$, $K^+$, and $Na^+$ were not significantly different among the topographic sites. Also, soil pH and SOM content were generally in optimal ranges for the fruit plants in the orchard fields, but other values were mostly higher than those in optimum. In addition, the contents of heavy metals were much lower than the levels of Soil Contamination Warning Standard.

Effect of Biodegradable Film Mulching on Soil Environment and Onion Growth and Yield (생분해성 멀칭필름이 토양환경과 양파 생육 및 수량에 미치는 영향)

  • Ji-Sik Jung;Do-Won Park;Hyun-Sug Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.207-215
    • /
    • 2023
  • This study was compared the soil environment and growth and yield of onion (Allium cepa L.) treated with non-mulching (NM) and mulching polyethylene film (PEF) and two biodegradable films (BFI and BFII) commonly used in farmhouses. Visual observation confirmed the degradation of BFI and BFII films after 150 days after tansplanting (DAT). BFII increased light penetration into the films and reduced the weight maintenace after 180 DAT, with a high decompostion at 30 days after soil tilling. Soil moisture contents much fluctuated between -14 kP and - 0 kPa in NM plots, increasing the minimum soil temperature of BFI plots. Mulching treatments decreased soil organic matter contents but did not subtantially increase soil mineral nutrients, soil bulk density, and number of bacteria compared to those of NM plots. Onion root growth was increased by PEF and BFI treatments at an early growth stage, 60 DAT, with the most remarkable stem extension observed for PEF and BFI treatments after 150 DAT. PEF and BFI treatments increased the bulb's diameter, length, weight, and lodging at 180 DAT. BFI treatments exhibited a high portion of the "very large" category producing with 55.3 tons ha-1 based on the classification into bulb size, followed by PE (49.3 tons), NM (9.4 tons), and BFII treatments (2.7 tons) at 230 DAT.

Physico-chemical Characteristics of used Plug Media and its Effect on Growth Response of Tomato and Cucumber Seedlings (재사용 플러그 상토의 이화학적 특성 및 재사용 상토가 토마토와 오이의 묘소질에 미치는 영향)

  • Byun, Hyo-Jeung;Kim, Young Shik;Kang, Ho-Min;Kim, Il Seop
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • The objective of the present study is to identify the physico-chemical characteristics of used plug media (UPM) and its effect on growth response of tomato and cucumber seedlings. The UPM from commercial media Mix#5 (Sungro co., Ltd.) was used in this study. This media was sterilized by sterilizer at $120^{\circ}C$ in 30 minutes at 1.5 atm. Physicochemical properties of UPM was compared with new plug media (NPM). Physical properties such as air volume, particle density, solid volume, bulk density were investigated by three phase device (DIK-1130, Japan). And chemical characteristics such as $NO_3$-N, $P_2O_5$, K, Mg, Ca, $SiO_2$, CEC, OM were investigated by soil spectrophotometer (PTIZEN 1412SA, Mecasys Co., Ltd). The result indicates that air volume and water holding capacity of UPM are lower than NPM (25%, 15%, respectively). Bulk density and soil weight are more than two times higher than NPM per unit volume. Compared to NPM, there were no significant different for pH and EC. But CEC of UPM is lower than NPM 40%. In order to compare growth response and ability absorption of inorganic elements by plants, cucumber and tomato seedlings were used and chemical characteristics after growing of mediums were determined. The result indicated that seeding quality of tomato and cucumber in UPM is less than in NPM and almost inorganic ions of UPM are lower than NPM. So it is necessary to improve physicochemical properties of UPM.

Water Use Efficiency of Barley, Wheat and Millet Affected by Groundwater Table under Lysimeter (라이시미터에서 지하수위에 따른 보리, 밀, 조의 수분이용효율 특성)

  • Kim, Beom-Ki;Gong, Hyo-Young;Shim, Jae-Sig;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.253-259
    • /
    • 2010
  • This experiment was conducted to evaluate water use efficiency of barley, wheat, and millet as a substitution crop for rice of fallow paddy field. Dry weight (DW), evapotranspiration, and transpiration of crop grown on the lysimeters controlled with 5 levels of groundwater table (GWT), 0, 25, 50, 75, and 100 cm were evaluated for optimum GWT and water use efficiency. All the lysimeters randomized with four replication arrangements were filled up sandy loam and were adjusted to the constant bulk density treated with twice water infiltration from bottom side to upper side of lysimeter. DW of barley, wheat, and millet in the plot of 0cm GWT that is saturated soil showed 34.9%, 44.7%, and 37.1% of that in the plot of 100 cm GWT, respectively showing a serious obstacle in crop growth. Evapotranspiration ratios calculated by evapotranspiration volume (mL) per DW were 166~605 mL for barley, 136~481 mL for wheat, and 81~418 mL for millet showing the order of barley > wheat > millet. Evapotranspiration ratio was increased with decrease of groundwater table that is the condition of moisture saturation. Estimation of GWT for maximum DW of wheat was 76 cm, and those of barley and millet were 100 cm below. The volumetric moisture content of lysimeter soil with cropping was markedly decreased as increase of crop growth because moisture supplying capability by capillary rise of water was less than amount of moisture required by crop.

The Effect of Popped Rice Hulls Compost Application on Soil Chemical and Physical Properties in Fluvio-marine plain paddy soils (퇴화염토지 논에서 팽화왕겨 퇴비시용이 토양이화학성에 미치는 영향)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Byung-Su;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.403-408
    • /
    • 2006
  • Fluvio-marine paddy soils in Korea consist of high silt content and have the hardpan located below 20~30 cm from surface soil. This properties cause poor rice rhizosphere conditions such as low permeability and porosity, high bulk density and hardness. The aims of this study was to investigate the effect of popped rice hulls compost(PRHC) on soil fertility changes in the Fluvio-marine plain paddy soils. Total nitrogen content and nitrogen mineralization rate of PRHC were 1.17 and 33.5, respectively, and its C/N ratio was 35.4. Application of PRHC increased the content of organic matter and exchangeable potassium and improved the bulk density and porosity. The content of $NH_4-N$ in soil was high in the PRHC plot until maximum tillering stage. An uptake amount of fertilized nitrogen was greater in standard fertilization plot at early growth stage, however, it was greater more in PRHC plots at the ripening period than in standard fertilization plot. Among the PRHC treated plots, uptake amount was the greatest in 50% PRHC plot during the all growth period. Nitrogen efficiencies were higher in PRHC plot during the all growth period. Rice yields in all PRHC plots were lower than in standard fertilization, however, the yield of 40% PRHC plot was similar with that of standard.

A study on automated soil moisture monitoring methods for the Korean peninsula based on Google Earth Engine (Google Earth Engine 기반의 한반도 토양수분 모니터링 자동화 기법 연구)

  • Jang, Wonjin;Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.615-626
    • /
    • 2024
  • To accurately and efficiently monitor soil moisture (SM) across South Korea, this study developed a SM estimation model that integrates the cloud computing platform Google Earth Engine (GEE) and Automated Machine Learning (AutoML). Various spatial information was utilized based on Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and the global precipitation observation satellite GPM (Global Precipitation Measurement) to test optimal input data combinations. The results indicated that GPM-based accumulated dry-days, 5-day antecedent average precipitation, NDVI (Normalized Difference Vegetation Index), the sum of LST (Land Surface Temperature) acquired during nighttime and daytime, soil properties (sand and clay content, bulk density), terrain data (elevation and slope), and seasonal classification had high feature importance. After setting the objective function (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE) using AutoML for the combination of the aforementioned data, a comparative evaluation of machine learning techniques was conducted. The results revealed that tree-based models exhibited high performance, with Random Forest demonstrating the best performance (R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).