• Title/Summary/Keyword: 토양 수분 포텐셜

Search Result 46, Processing Time 0.035 seconds

Changes of Leaf Area Index, Physiological Activities and Soil Water in Tricholoma matsutake Producing Pine Forest Ecosystem (송이산 소나무림 생태계에서 엽면적지수와 생리적활동 및 토양수분의 변화)

  • Koo, Chang-Duck;Ka, Kang-Hyun;Park, Won-Chul;Park, Hyun;Ryu, Sung-Ryul;Park, Yong-Woo;Kim, Tae-Heon
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.438-447
    • /
    • 2007
  • The purpose of this study was to understand the ecosystem structure and function and soil water changes in Tricholoma matsutake producing pine stands. The investigated stands were pine forest in Sogrisan National Park in Chungbuk-do of Korea. For the purpose we investigated main vegetation, leaf area index(LAI) as ecosystem structural factors and measured photosynthesis, transpiration, xylem water potential, and soil water changes as ecosystem functional factors. Vertical vegetation structure of the site was composed of Pinus densiflora as a overstory species, Quercus mongolica as midstory, Rhododendron mucronulatum, R. schlippenbachii and Fraxinus sieboldiana as understory ones. In the stands LAI was 3.8 during June to September, 2.6 in October and 2.1 during November to April. Photosyntheses of the trees were 6.0 to $7.0{\mu}mol\;CO_2/m^2/s$ in August, and for P. densiflora about $4.0{\mu}mol\;CO_2/m^2/s$ and for Q. mongolica $2.0{\mu}mol\;CO_2/m^2/s$ in mid October. However, R. mucronulatum stopped fixing $CO_2$ and F. sieboldiana shed off the leaves already in mid October. Transpirations were 2.5 to $3.5mmol\;H_2O/m^2/s$ in late August and about $1.0mmol/H_2O/m^2/s$ in mid October. Plant water potentials were -10 to -22 bars for P. densiflora and -5 to -12 bars for the other woody species. The lowest potentials was in late August and highest in late October. Soil water in the stand was closely related to topography. Soil water contents were 7 to 11% at the ridge, 8 to 15% at the hillside and 11 to 19% at the base. Soil temperatures were 0.2 to $0.4^{\circ}C$ higher in T. matustuake colony than noncolony. Mid September soil temperature decreased to $19^{\circ}C$ at which T. matsutake forms primordia. In T. matsutake colony soil moisture was 0.5 to 2.0% lower due to metabolism for consuming water. We suggest that the complicate relationships between ecosystem structure and function in Tricholoma matsutake producing pine stand need to be further investigated.

Physiological responses to drought stress of transgenic Chinese cabbage expressing Arabidopsis H+-pyrophosphatase (애기장대 H+-pyrophosphatase 발현 형질전환 배추의 건조스트레스에 대한 생리적 반응)

  • Jeong, Mihye;Kang, In-Kyu;Kim, Chang Kil;Park, Kyung Il;Choi, Cheol;Han, Jeung-Sul
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.156-162
    • /
    • 2013
  • Plant tolerance to drought is a beneficial trait for stabilizing crop productivity under water deficits. Here we report that genetically engineered Chinese cabbage expressing Arabidopsis $H^+$-pyrophosphatase (AVP1) shows enhanced physiological parameters related to drought tolerance. In comparison with wild type plants under soil water deficit stress created by cessation of irrigation, soil water potential in pot with AVP1-expressing plants was more rapidly decreased that might lead to increased relative water content in leaves, while both genotypes had indistinguishable wilting phenotypes. Transgenic plants subjected to drought treatment also exhibited higher photosystem II quantum yield in addition to lower electrolyte leakage and $H_2O_2-3,3^{\prime}$-diaminobenzidine content when compared to wild type plants.

Effect of Soil Water Potential on Pysico-Chemical Properties of Soil and Cucumber(Cucumis sativus L.) Growth (토양(土壤) 수분(水分)포텐셜이 오이(Cucumis sativus L.)생육(生育)과 토양(土壤) 이화학적(理化學的 ) 특성(特性)에 미치는 영향(影響))

  • Bum, In-Sook;Kim, Yong-Woong;Kim, Kwang-Sik;Kim, Kil-Yong;Sohn, Bo-Kyoon;Kim, Hyun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.171-181
    • /
    • 1999
  • A field experiments was carried out to investigate the physicochemical properties of soil and cucumber growth in vinyl house when irrigation point was made at 0.2, 1/3, 0.5 and 1.0 bar. The obtained results was summarized as follow: The taxonomic class of the soil used was loam and each content of the required water was 4.4, 7.3, 9.6 and 13.4 mm per each irrigation time at 0.2, 1/3, 0.5 and 1.0 bar treatments in spring culture, respectively. At 0.2 bar and 1.0 bar treatments, interval of irrigation was 2.3 and 14.8 day, the times of irrigation was 37 and 6, and total irrigation volume was 163.5 and 80.3 mm, respectively. After cucumber culture, pH, EC concentration and exchangeable K content of soil at 0.2 bar treatment was distributed near to the level of improvement target while EC, available $P_2O_5$ and exchangeable base content in other treatments were higher compared to improvement target. At 1.0 bar treatment, ratios of the solid and liquid phase were 44.9 and 27.1%, respectively, and bulk density was $1.26g\;cm^{-3}$ which was the highest among the treatments. At 0.2 bar treatment, the ratio of the solid and liquid phase was 41.7 and 22.8%, respectively, and bulk density was $1.09g\;cm^{-3}$ which was the lowest. The root length and radius at 0.2 bar treatment were best, while those at 1/3 bar were worst. At 0.2 bar treatment, the total yield was 7,269 kg and the weight of good products was 5,677 kg which was the highest among treatments. At 0.33 bar treatment, the yield was the lowest with the high ratio of deformity.

  • PDF

Xylem Sap Flow Affected by Short-term Variation of Soil Moisture Regimes at Higher Growth Period in 'Fuji'/M.9 Apple Trees with Different Fruit Loads (착과량 수준 및 생육성기 토양수분 함량 변화에 따른 '후지'/M.9 품종의 수액이동 특성)

  • Park, Jeong-Gwan;Kim, Seung-Heui;Lee, In-Bok;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.164-169
    • /
    • 2006
  • This study was conducted for 10 days from 17 July to 26 July in 2005 to measure the amount of xylem sap flow under short-term variation of soil moisture regimes at -20 kPa, -50 kPa and -80 kPa in eight-year-old 'Fuji'/M.9 apple trees with different fruit loads. Fruit load was adjusted as three different treatments with standard (100%), 1/2 times (50%) and 2 times (200%) on the basis of optimum fruiting number per tree as the standard fruit load of Fuji cultivar. Trees with standard fruit load during the experimental period showed higher xylem sap flow at -50 kPa of soil moisture regimes than those of trees with 1/2 times and 2 times fruit load. Trees with 1/2 times and 2 times fruit load had similar patterns of the diurnal changes of xylem sap flow, vapor pressure deficit (VPD), and maximum evapotranspiration (ETm). However, trees with 2 times fruit load at -50 kPa and -80 kPa of soil moisture regimes produced lower amount of xylem sap flow than ETm. Trees with standard fruit load produced $1.06{\sim}3.93$ L/tree more amount of xylem sap flow than ETm at all soil moisture regimes. But xylem sap flow of tees with 2 times fruit load had 21% lower at -50 kPa and $31{\sim}36%$ lower at -20 kPa and -80 kPa of soil moisture regimes, respectively than that of trees with standard fruit load. Shoot growth and leaf area were significantly the highest in trees with standard fruit load while those of trees with 2 times fruit load recorded significantly lowest. Leaf water potential of trees with standard fruit load was lower than that of trees with 1/2 times and 2 times fruit load. It indicated that tees with standard fruit load had higher water use for transpiration than other treatments and tees with 2 times fruit load received more stress for the transpiration process under low soil moisture regimes. Consequently, 'Fuji'/M.9 apple trees, the fruit load and soil moisture should be maintained optimum to increase xylem sap flow and transpiration during higher growth period.

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Characterization of Weed Occurrence in Major Horticultural Crops - II. Effects of Temperature and Moisture on Germination and Emergence of Weeds (원예경작지(園藝耕作地)에서의 잡초발생(雜草發生) 특성(特性)에 관(關)한 연구(硏究) - II. 온도(溫度) 및 수분환경(水分環境)과 잡초발생(雜草發生)의 변동(變動))

  • Woo, I.S.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.9 no.2
    • /
    • pp.123-129
    • /
    • 1989
  • 1) Optimum temperature was $15^{\circ}C$ for C. bursa-pastoris, $20^{\circ}C$ for C. album, $30^{\circ}C$ for P. oleracea, A. lividus, E. crus-galli, D. sanguinalis, and 4 showed wide range of germination temperature. 2) Emergence of C. bursa-pastoris, and C. album was best at $14.8^{\circ}C$ of soil temperature, E. crus-galli at $23^{\circ}C$, E. indica, A. lividis and P. oleracea at $27.1^{\circ}C$ and A. retroflexus and D. sanguinalis at $31.1^{\circ}C$. 3) A. retroflexus and P. oleracea started to germinate at 30% water absorption stage and A. lividus, C. album, S. viridis, and D. sanguinalis at 40% and E. indica at 70%. 4) Germination of weed species was decreased as PEG 6000 induced osmotic potential lowered. C. album, P. oleracea, D. sanguinalis, A. lividus, and Solanum nigrum were germinated at -5.0 bar osmotic potential and C. album and P. oleracea were germinated at -7.0 bar.

  • PDF

Preferential Flow as Tested by Breakthrough Curves of Cl- and Cu2+ from Saturated Undisturbed Soil Core Samples under Steady Flow Conditions (포화 불교란 토양시료의 Cl- 및 Cu2+ 출현곡선에 의한 preferential flow의 검증)

  • Yoo, Sun-Ho;Han, Kyung-Hwa;Ro, Hee-Myong;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • Preferential flow has recently been the subject of increasing interest because these phenomena contribute to solute transport in soils. Commonly, preferential flow paths are associated with macropores or highly structured soils. We presented an analysis of the measured breakthrough curves (BTCs) of $Cl^-$ and $Cu^{2+}$ ions to test the occurrence of preferential flow in soils using miscible displacement technique under steady flow conditions. We also analyzed soil water retention curves and from this curves induced cumulative pore size distribution of undisturbed soils, which sampled from Ap1, B1, and C horizons of Songjeong series soils (the fine loamy, mesic family of Typic Hapludults). In this study, miscible displacement experiment on C horizon was excluded, because it is structureless sandy loam with saturated hydraulic conductivity of $5.2cmhr^{-1}$. The saturated hydraulic conductivity of Ap1 horizon was $2.0cmhr^{-1}$, which was about 7 times higher than that of B1 horizon ($0.27cm hr^{-1}$). Cumulative pore size distribution predicted that Ap1 horizon had more macropores (pore diameter larger than $49{\mu}m$, equivalent to -6 kpa of soil matric potential) than B1 horizon. The hydrodynamic dispersion coefficient from chloride BTCs was estimated as $1.3cm^2hr^{-1}$ for B1 and $34cm^2hr^{-1}$ for Ap1 horizon. However the retardation factors of B1 and Ap1 horizon were significantly different, i.e. 1 and 0.6, respectively, which means that there was distinct partition between mobile water and immobile phase in Ap1 horizon. The copper retardation effect of Ap1 horizon was less than that of B1 horizon, even though cation exchange capacity of Ap1 horizon was higher than that of B1 horizon. Thus, breakthrough curves of $Cl^-$ and $Cu^{2+}$ obviously showed the probability that preferential flow would occur in Ap1 horizon.

  • PDF

Morphological Characteristics of Tricholoma matsutake Ectomycorrhiza (송이 외생균근(外生菌根)의 형태적(形態的) 특징(特徵))

  • Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.1 s.158
    • /
    • pp.16-20
    • /
    • 2005
  • Tricholoma matsutake ectomycorrhizas are unique in their morphology: not bifurcated broom shaped roots with not easily wettable brilliant and profuse white hyphae. To understand these characteristics the ectomycorrhizas were investigated with electron microscopy. T. matsutake ectomycorrhiza have thin mantle and typical Hartig net development in the epidermis and cortex, but no fungal mantle on the root apex. There were no penetrating hyphae inside of the cells of either epidermis, cortex or stele. Inside of the walls of epidermis and cortex cells are lined with ca. $2{\mu}m$ hemispherical amyloplasts. The brilliant hyphal surface was covered with various fine amorphous granules. The hyphal cell wall was thin membrane less than $0.3{\mu}m$ thick. There is no clamp connection on the hyphae. This thin membraneous cell wall with high elasticity can be related to survival strategy of the species without plasmolysis under frequent soil water stress environment. And the coarse hyphal surface with some water repellency can control sudden inrush of water of the hyphae with an extremely low osmotic potential. It is concluded that no mantle on the tip can induce mycorrhizas not bifurcated and that finely coarse surface of T. matsutake hyphae can make the hyphae brilliantly white but less wetted.

Application of Non-photochemical Quenching on Screening of Osmotic Tolerance in Soybean Plants (콩의 삼투 저항성 검정에 있어서 Non-photochemical quenching의 적용)

  • Park, Sei-Joon;Kim, Hyun-Hee;Ko, Tae-Seok;Shim, Myong-Yong;Yoo, Sung-Yung;Park, So-Hyun;Kim, Tae-Gyeong;Eom, Ki-Cheol;Hong, Sun-Hee;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.390-399
    • /
    • 2010
  • Non-photochemical quenching (NPQ) values for utilizing them to detect osmotic tolerance in plants were examined with two different soybean cultivars, an osmotic tolerant soybean (Shinpaldalkong 2) and a control soybean (Taekwangkong). Two different stresses were applied to the cultivars as the restricted irrigations of 200 and 50 ml water $pot^{-1}\;d^{-1}$ for 5 days for a control and a drought stress, respectively, and a sodium chloride solution of 200 mmol for 6 days for a salt stress. The intact leaves of the two cultivars after treatment were used to measure chlorophyll fluorescence parameters, maximum efficiencies of photosystem II photochemistry (Fv/Fm), efficiencies of photosystem II photochemistry (${\Phi}_{PSII}$), $CO_2$ assimilation rate ($P_N$), and NPQ. Leaf water potentials of the two cultivars decreased from - 0.2 to - 0.8MPa by a drought treatment and from - 0.7 to - 1.7MPa by a salt treatment. Leaf water content of Shinpaldalkong 2 after a salt treatment was less decreased than that of Taekwangkong. $F_v/F_m$ values of both cultivars were not changed, while ${\Phi}_{PSII}$ and $P_N$ were decreased proportionally to leaf water potential decrease. The response of NPQ was occurred in Shinpaldalkong 2 under the drought and salt stresses. With Taekwangkong cultivar, only drought stress referred NPQ response. The cultivar differences on chlorophyll fluorescence parameters were found in the relationships between ${\Phi}_{PSII}$ and $P_N$, and between NPQ and ${\Phi}_{PSII}$. Although the positive relationships between ${\Phi}_{PSII}$ and $P_N$ were established on all treatments of both cultivars, the decreasing rate of ${\Phi}_{PSII}$ to $P_N$ was smaller in Shinpaldalkong 2 than Taekwangkong. The NPQ was increased according to the decrease of ${\Phi}_{PSII}$ by osmotic treatments in Shinpaldalkong 2. The complementary relationships between NPQ and ${\Phi}_{PSII}$ were well maintained at all treatments in Shinpaldalkong 2, while these relationships were lost at a salt treatment in Taekwangkong. Taken together, the results suggest that analysis of complementary relationships between ${\Phi}_{PSII}$ and NPQ could be more valuable and applicable for determining osmotic tolerance than single analysis of each parameter such as $F_v/F_m$, ${\Phi}_{PSII}$ and NPQ.

Effect of Seed-Fertilizer Distance with Soil Moisture and Fertilizer Application Levels on the Emergence and Initial Growth of Barley (토양수분(土壤水分) 및 시비량(施肥量)에 따른 종자(種子)와 비료(肥料)의 수직거리(垂直距離)가 보리 출아(出芽) 및 초기생육(初期生育)에 미치는 영향(影響))

  • Park, Moo-Eon;Kim, Seok-Dong;Ha, Yong-Woong;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.274-282
    • /
    • 1984
  • In order to study the effect of seed-fertilizer vertical distance with soil moisture and fertilizer levels on the emergence and initial growth, barley cv. Olbori was seeded in the pots filled with sandy loam or loamy sand soils which were adjusted to 80-100% (higher soil moisture) or 50-60% (lower soil moisture) of soil moisture retention percent at 1/10 atmosphere tension. Prior to seeding of barley seed-fertilizer distance was appropriately controlled by adding soils after dressing fertilizer at three levels-normal application ($N:P_2O_5:K_2O=6-9-7kg/10a$), 50% increase of normal dose and double application. In addition, germination experiment was conducted in the various concentrations of fertilizer solutions under room temperature. The results are summarized as follows; 1. Seed-fertilizer vertical distance must be more than three centimeters to avoid from the decrease and retardation of emergence and poor initial growth of bareley by fertilizer application. 2. Emergence of barley more decreased and retarded in sandy soils than loamy soils and was decelerated with increase of application rate in fertilizer and decrease of soil moisture content. 3. Germination rate remarkably decrease from 0.4 percent of nitrogen solution and 0.5 percent of potassium solution and reached zero at 2.3 and 2.4 percent of nitrogen and potassium solutions, respectively. 4. Germination of seeds affected by concentrated fertilizer solutions was remarkably recovered with dilution degree of fertilizer solution.

  • PDF