• Title/Summary/Keyword: 토양 분석

Search Result 5,197, Processing Time 0.033 seconds

Comparison of Establishment Vigor, Uniformity, Rooting Potential and Turf Qualtiy of Sods of Kentucky Bluegrass, Perennial Ryegrass, Tall Fescue and Cool-Season Grass Mixtures Grown in Sand Soil (모래 토양에서 켄터키블루그라스, 퍼레니얼라이그라스, 톨훼스큐 및 한지형 혼합구 뗏장의 피복도, 균일도, 근계 형성력 및 잔디품질 비교)

  • 김경남;박원규;남상용
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.129-146
    • /
    • 2003
  • Research was initiated to compare establishment vigor, uniformity, rooting potential and turf quality in sods of cool-season grasses (CSG). Several turfgrasses grown under pure sand soil were tested. Establishment vigor, uniformity, rooting potential and turf quality were evaluated in the study. Turfgrass entries were comprised of three blends from Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.), respectively and three mixtures among them. Differences by treatments were significantly observed in establishment vigor, uniformity, rooting potential and turf quality. Early establishment vigor was mainly influenced by germination speed, being fastest with PR, intermediate with TF and slowest with KB. In a late stage of growth, however, it was affected more by growth habit, resulting in highest with KB and slowest with TF. There were considerable variations in sod uniformity among turfgrasses. Best uniformity among monostand sods was associated with KB, while poorest one with TF. PR sod produced intermediate uniformity between KB and TF. The uniformity of polystand sods of CSG mixtures was inferior to that of monostands of KB, PR and TF, due to characteristics of mixtures comprised of a variety of color, density, texture and growth habit. The greatest potential of sod rooting was found with PR and the poorest with KB. Intermediate potential between PR and KB was associated with TF. In CSG mixtures, it was variable, depending on turfgrass mixing rates. Generally, the higher the PR in mixtures, the greater the sod rooting potential. At the time of sod harvest, however, turfgrass quality of KB was superior to that of PR. because of its characteristics of uniform surface, high density and good mowing quality. These results suggest that a careful expertise based on turf quality as well as sod characteristics like establishment vigor, uniformity and rooting potential be strongly required for the success of golf course or athletic field in establishment.

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.

Studies on the Utilization of Woodland for Livestock Farming II. Problem and Its Improvement Followed by the Join Cattle Grazing in king Won Do (임지의 축산적 이용에 관한 연구 제2보. 강원도의 새마을 "소" 임간공동방목사업의 문제점과 개선책)

  • 맹원재;윤익석;유제창;정승헌
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.3 no.2
    • /
    • pp.100-111
    • /
    • 1983
  • The research results reported herein had the objectives to understand and analyze the present problems of saemaeul woodland joint cattle grazing system in Kang Won Do and to take steps of improvement. The study results on actual management conditions, problems analyzed and improvement plan of total 208 joint cattle grazing area which was established 105 area in 1981 and 103 area in 1982 were summarized as follows: 1. the effectiveness of joint cattle grazing projects 1) Average daily weight gain of cattle during joint cattle grazing period was 0.4kg, showing higher daily than the conventional feeding of 0.33kg. 2) Increase of total farm income over the conventional feeding system were \1,031,357,320 during the grazing period from May to October in 1982 by adapting the 208 joint cattle grazing system, of which effectiveness of weight gain was \293,075,300 and labor saving was \543,838,750. 3) According to the results of questionaire investigation from 208 joint cattle grazing area, effectiveness of joint cattle grazing system over the conventional system were (1) labor saving, (2) feed cost saving, (3) reduced diseases, (4) increase of number of feeding, (5) inspiration of joint endeavor, (6) effect of more gain, (7) easiness of feeding and feed cost savings. 2. Problems of joint cattle grazing system. 1) Shortages of grass were a problem at second year of joint cattle grazing period due to the low regrowth rate of wild grass. 2) Proper land for woodland joint cattle grazing is belonging to land of Government ownership and it is very hard to get the permission from office of forestry for cattle grazing purpose. 3) It is also difficult to find a proper time of breeding in grazing area by the difficulty of estrus detection. 4) There are a difficulty to give a proper vaccination and medical examination for the grazing cattle. 3. Improvement plans for woodland joint cattle grazing projects. 1) Obtain sufficient roughages by hoof cultivation and oversowing pasture from the second year of joint cattle grazing period. 2) In order to increase the beef production and to use for a calf production area, Government should arrange that all proper grazing land of Government owned in Kang Won Do convert into woodland joint cattle grazing area. 3) Make a good reproductive record by mixed grazing with a excellent breeding cow in a remote area. And carry out the collective artificial insemination with synchronous puberty induced by injection of puberty stimulation hormone. 4) Make a preventive injection for blackleg, twice medication of fasciola hepatica in a year, and spray and medication of tick insecticide. 4. A policy towards upbringing of woodland joint cattle grazing area. 1) Government should thoroughly investigate about a proper land for woodland joint cattle grazing from all forests. 2) When the area is suitable for the woodland joint cattle grazing, though it is national forest or restricted area, government should make it possible to establish a grazing area. 3) On the proper land foe joint cattle grazing in the remote place, Government should support for the road construction and electric fence equipments by using of national funds. 4) There should be an administrative consideration for well promotion of the project that make woodland joint cattle grazing suitable to the characteristics of Kang Won Do. 5) In order to improve the reproduction record, Government should reform the insufficiency of artificial insemination in the joint cattle grazing area. 6) In order to maintain a proper price of cow, Government should carry out the price plan. 7) When there is any request for grassland formation in the woodland joint cattle grazing area, Government should permit it with preference.

  • PDF

The Status, Problems and Countermeasure of Direct Rice Seeding in Honam Province - On Weed control - (호남지방(湖南地方) 직파재배(直播栽培)의 현황(現況), 문제점(問題點) 및 대책(對策) - 잡초방제적(雜草防除的) 측면(側面)에서 -)

  • Ryang, Hwan-Seung;Kim, Jong-Seog
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.271-291
    • /
    • 1992
  • This study was conducted to survey the situation of direct rice seeding in Honam province in Korea to investigate problems and seek countermeasure of weed control in direct rice seeding. The total area of direct rice seeding in the south-western part of Korea (Chonbuk, Chonnam, and Chungnam) was 1650.8ha (732.1ha for direct seeding in dry field and 918.7ha for direct seeding in flooding field) in 1992. The followings are summary of the study. 1. In case of direct rice seeding in dry field, butachlor EC and G at 3 to 5 DAS was mostly selected by farmers to control weeds in dry field. Benthiocarb or chlornitrofen was also used in few cases. At 10 to 14 DAS just before rice emergence, tank misture of butachlor EC and paraquat was treated by some farmers. At 35 to 40 days, after flooding mixture of sulfonylurea derivatives was sequentially applied. Surviving weeds including barnyardgrass were finally controlled by mixture of bentazon+quinclorac WP foliage application. 2. In case of direct rice seeding in flooding field, weed control were mostly unsuccessful partially due to wrong selection of herbicide and missing the optimum application time. Three relatively successful weed control in the survey were summarized as follows. 1) Oxadiazon EC, butachlor or benthiocarb were treated just after puddling(5 to 7 days before seeding). then mixture of bentazone+quinclorac WP or sulfonylurea derivatives was sequently applied to control remaining weeds at 20 days after seeding. 2) Mixtures of bensulfuronmethyl+dimepiperate G, pyrazosulfuronethyl+molinate G, or bensulfuronmethyl+mefenacet+dymron G were applied at 11 days after puddling when barnyardgrass were at 2.0 leaf stage. Phytotoxicity was not found in case of mixture of bensulfuronmethyl+dimepiperate G but found in the other two cases but disappeared later. 3) Mixtures of bensulfuronmethyl+quinclorac G., pyrazosulfuronethyl+quinclorac G or betazone and quinclorac G were treated after 18 to 20 days after puddling when barnyardgrass was within 3.0 leaf stage. It showed good weed control in both annuals and perrenials without phytotoxicity. On the contrary, other sulfonylurea derivatives such as middle periodic herbicide showed poor weed control against barnyardgrass, so that sequential treatment of bentazone+quinclorac WP mixture was required. 3. Herbicidal characteristics and optimum application time of 45 rigistered herbicides in Korea were analyzed to discover new substitute for quinclorac mixture, that showed excellent weed control against barnyardgrass at its 3 leaf stage or older. The analysis revealed that 70% of herbicides were for preemergence and the others were post periodic herbicide. Most farmers favor to apply herbicide when rice seedlings completely rooted, at this time barnyardgrass are at 2.5-3.0 leaf stage. Therefore herbicide of which optimum application time had long is required. In this study. 6 middle periodic herbicides among sulfonylurea derivatives and 2 quinclorac mixture were selected and evaluated their weeding spectrums at different leaf stage of barnyardgrass in both soil application in flooding condition and foliage application in dry paddy field. The order of weeding spectrum in magnitude was as follows : bentazone+quinclorac WP> bentazone + quinclorac G>bensulfuronmethyl + quinclorac G>pyrazosulfuronethyl + quinclorac G> pyrazosulfuronethyl + Molinate G>bensulfuronmethyl + mefenacet + dymron G>bensulfuronmethyl + mefenacet G>bensulfuron methyl+benthiocarb G. The above results coincided with that of the survey. In conclusion, there is no proper substitute for quinclorac mixrure, which can control barnyardgrass at 3.0 leaf stage or even older. Therefore quinclorac should be supplied continuously to farmers in order to anchor direct rice seeding in Korea. Author suggested the followings to eastablish direct rice seeding technology effectively and quickly : 1) A tentatively named "The research committee for direct rice seeding" which was composed of farmers. researchers and goberment. should be eastablished to cooperate effectively. 2) Development of a pricise direct rice seeding machine for both dry and flooding paddy field. which is workable regardless of condition and varieties of seeds. 3) Study on protecting rice seed and seedling from sparrows. 4) Systematic studies of weed control techniques in direct rice seeding to standardize herbicide application. 5) Studies on farm-land reformation. techniques of precise land preparation. and direct rice seeding using an airplane.

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF