• Title/Summary/Keyword: 토양 미생물상(土壤 微生物相)

Search Result 126, Processing Time 0.032 seconds

Influence on Composting of Waste Mushroom Bed from Agaricus bisporus by using Mixed Organic Materials (혼용자재 특성이 양송이 폐상배지를 이용한 퇴비제조에 미치는 영향)

  • Kyung, Ki-Cheon;Lee, Hee-Duk;Jung, Young-Pil;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.335-340
    • /
    • 2010
  • This study was conducted to select organic materials (OM) and nitrogen sources in composting of waste mushroom bed from Agaricus bisporus. We examined physio-chemical properties of the organic materials and the mixture ratio for preparing the wasted mushroom bed (M) compost. The carbon content of sawdust was higher than those of rice straw (R) as OM source and the nitrogen content was high in the order of fowl manure (F)>> pig manure (P)> cow manure (C). The compost was prepared to maintain the criteria of above 25% organic matter and then the change of their ingredients was estimated during the process of fermentation. The temperature of waste mushroom bed+pig manure+rice straw (MRP) treatment was varied fast throughout fermentation, on the other hand the temperature of waste mushroom bed+pig manure+sawdust (MSP) treatment was steadily elevated to the middle of composting. The pH of the compost was somewhat high to pH 8.5~9.0 at the early stage, but decreased to 7.5 at the end stage of composting. The content of OM after fermentation was decreased to the level of 19~21% in rice straw, but the sawdust treatment maintained 25~27% organic matter. The waste mushroom bed+fowl manure+rice straw (MRF) treatment, which contains 26.2% organic matter and 0.68% nitrogen, was the highest among them. The volume of compost was reduced to 50% by using rice straw as organic matter, but reduced to 30% by using the sawdust. The contents of heavy metal in the compost were suitable within the legal criteria. The number of microorganisms were higher in the rice straw than those in the sawdust. It was high in the order of fowl manure> pig manure> cow manure. The major groups consisted of aerobic bacteria, gram negative bacteria and Bacillus sp. and their populations after fermentation were increased to $1{\times}10^1{\sim}1{\times}10^2\;cfu\;g^{-1}$ rather than those before fermentation. Therefore we concluded that the waste mushroom bed+fowl manure+sawdust (MSF 3:9:1 v/v/v) treatment was suitable combination for high organic matter and nitrogen source, and the periods of composting were 50~60 days.

Analysis of Microbial Community Structure in Soil and Crop Root System II. Analysis of soil microbial community structure in different soil Environmental conditions by MIDI and DNA analyses (토양과 작물근계의 미생물군집 구조 해석 II. MIDI 및 DNA 분석에 의한 토양환경별 미생물 군집 해석)

  • Ryu, Jin-Chang;Kwon, Soon-Wo;Kim, Jong-Shik;Suh, Jang-Sun;Jung, Beung-Gan;Choi, Sun-Shik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.118-126
    • /
    • 2002
  • To evaluate the correlations of microbial populations with soil healthiness and crop production and establish the criteria for microbial population of soil types. We analyzed the microbial community structure of 13 soils which were different in physical and chemical properties and cultivation methods. According to the analysis of microbial population suing the dilution plate method, the large differences of the microbial population structures among soil types were shown: aerobic bacteria $2-27{\times}10^6$, fluorescent Pseudomonas $1-1,364{\times}10^5$, Gram negative bacteria $1-126{\times}10^4$, and mesophilic Bacillus $1-110{\times}10^5$. The density of Gram negative bacteria was highest on red pepper cultivating soils (sample no. 4 and 6) of Umsung and Gesan, Chungbuk, and the density of the fluorescent Pseudomonas was highest on greenhouse soil (sample no. 7) of Jinju, Kyungnam. The crop productivity of three soils was high as compared with those of other soils. It was supposed that the density of fluorescent Pseudomonas and mesophilic Bacillus were correlated with the incresed crop production. By MIDI analysis, 579 strains isolated from 13 soils composed of a variety of microbes including 102 isolates of Agrobacterium, 112 isolates of Bacillus, 32 isolates of Pseudomonas, 44 isolates of Kocuria, and 34 isolates of Pseudomonas. Among the 624 isolates of Gram negative bacteria, Pseudomonas including P. putida and p. fluorescens occupied the highest density (51%), and Stenotrophomonas maltophilia and Burkholderia cepacia also appeared at high density. From RAPD analysis, the fluorescent Pseudomonas strains isolated from 13 soil types showed a high level of strain diversities and were grouped into 2 - 14 patterns according to soil types. Many of unknown bacteria were recovered from the paddy soil, and needed to be further characterized on the molecular basis.

Characterization and phylogenetic analysis of halophilic bacteria isolated from rhizosphere soils of coastal plants in Dokdo islands (독도 해안식물로부터 분리된 호염성 세균들의 특성 및 계통학적 분석)

  • You, Young-Hyun;Park, Jong Myong;Lee, Myung-Chul;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • To study the halobacterial diversity at the rhizospheric soil of coastal plant native to Dokdo islands, several host plant were selected and its rhizospheric soil was sampled. Soil sample was diluted serially and pure isolation was done by sub-culture using marine agar media. 26 halophilic strains cultivable at the marine medium containig concentration of 9.0% sodium chloride were selected among total 161 isolates. Their partial 16S rRNA gene sequences extracted from genomic DNA were analyzed and partially identified. Furthermore, to identify their genetic relationship, phylogenetic tree was deduced. Total 26 strains were belongs to Firmicutes (30.8%), Gamma proteobacteria (53.8%), Bacteroidetes (7.7%), Alpha proteobacteria (7.7%), and Actinobacteria (7.7%). These results showed the specific difference from previous researches which has been reported the microbial flora of soil or sea water around the Dokdo islands. Furthermore, 4 among 26 halophilic strains grew at above 12.0% NaCl concentrated marine broth, and 2 strains Idiomarina abyssalis LM4H23 and Halomonas huangheensis AS4H13 grew at 15.0% concentration. These halophilic strains thought to overcoming the severe stress like high salt concentration or variation derived from Dokdo-specific climate and might have unknown, specific relationship with their host coastal plant native to Dokdo islands.

Molecular Analysis of Microbial Community in Soils Cultivating Bt Chinese Cabbage (분자생물학적 분석을 통한 Bt 배추의 토양미생물상 영향 비교평가)

  • Sohn, Soo-In;Oh, Young-Ju;Oh, Sung-Dug;Kim, Min-Kyung;Ryu, Tae-Hoon;Lee, Ki-Jong;Suh, Seok-Choel;Baek, Hyeong-Jin;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • The aim of this study was to investigate the possible impact of Bt Chinese cabbage on the soil microbial community. Microbial communities were isolated from the rhizosphere of one Bt Chinese cabbage variety and four varieties of conventional ones and were subjected to be analyzed using both culture-dependent and molecular methods. The total counts of bacteria, fungi, and actinomycetes in the rhizosphere of transgenic and conventional Chinese cabbages were observed to have an insignificant difference. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that the bacterial community structures were very similar to each other and this genetic stability of microbial communities was maintained throughout the culture periods. Analysis of dominant isolates in the rhizosphere of transgenic and conventional Chinese cabbages showed that the dominant isolates from the soil of transgenic Chinese cabbage belonged to the Bacilli and Alphaproteobacteria, while the dominant isolates from the soil of conventional cabbage belonged to the Holophagae and Planctomycetacia, respectively. These results indicate that the Bt transgenic cabbage has no significant impact on the soil microbial communities.

The Influence of Pesticides on Some Chemical and Microbiological Properties Related to Soil Fertility -I. Effects of Herbicide (CNP) on Some Soil Chemical Factors Concerning Nitrogen Mineralization (농약제(農藥劑)의 시용(施用)이 토양(土壤)의 비옥성(肥沃性) 및 미생물상(微生物相)에 미치는 영향(影響) -I. CNP 시용(施用)이 토양(土壤)의 pH, Eh 및 질소무기화(窒素無機化)에 미치는 영향(影響))

  • Ryu, Jin-Chang;Araragi, Michio;Koga, Hiroshi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.372-381
    • /
    • 1983
  • A laboratory experiment was performed to investigate the effects on redox potential of submerged soil by application of CNP herbicide (2, 4, 6-Trichlorophenyl-4-Nitrophenyl ether) with or without rice straw. Two soils, sandy loam and clay loam textured, were incubated for sixty days at a constant temperature, $25^{\circ}C$. Sampling and analysis of pH, Eh and nitrogen mineralization were carried out during the incubation. The results were summarized as follows. 1. The CNP application decreased redox potential and increased soil pH. The higher the concentration of applicated CNP was, the effects on soil Eh and pH were higher. When rice straw was used with CNP, the Eh of soil remarkably decreased, but seperating the individual effects of rice straw and CNP was impossible in this study. 2. Ammonification increased as the concentration of applied CNP increased regardless of rice straw application or not. It was higher in sandy loam soil than clay loam soil. 3. Nitrification decreased as the concentration of applied CNP increased, especially in the sandy loam soil. Rice straw application reduced nitrification.

  • PDF

Effect of Chitosan and Wood Vinegar on the Growth and Nutrient Absorption of Red Pepper (Capsicum annum L.) (키토산과 목초액 처리가 고추의 생육 및 양분흡수에 미치는 영향)

  • 엄미정;박현철;문영훈;김갑철;한수곤
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.67-73
    • /
    • 2002
  • This study was conducted to investigate the effect of organic agricultural materials, chitosan and wood vinegar, on the growth and yield of red pepper and soil microflora. In the chitosan treatments, the density of actinomycetes in soils increased, while the density of fungi decreased. Compared with the conventional cultivation, the stem diameter of red pepper was greater in the chitosan or wood vinegar experimental plots at 50 days after transplanting, though there was no difference in chlorophyll content among treatments. The incidence of disease and insect was higher in the treatments of organic agricultural materials than the conventional cultivation, regardless of application frequency. Contents of cations such as Ca and K in leaves and fruits increased by chitosan treatment. In all experimental plots, fruit yield decreased because of diseases and insects. But in chitosan treatment plot with 10 times of application, characteristics of fruits were superior to others and the yield index of red pepper was the highest as 92.4% as compared to the conventional cultivation.

Residue of Herbicide Napropamide and Change of Microorganism in Upland Soil Under Different Environmental Conditions (환경조건 차이에 따른 밭 토양중 제초제 Napropamide의 잔류 및 토양미생물상 변화)

  • Han, S.S.;Jeong, J.H.;Choi, C.G.
    • Korean Journal of Weed Science
    • /
    • v.14 no.4
    • /
    • pp.298-313
    • /
    • 1994
  • Residue of herbicide napropamide [N,N-dimethyl-2-(1-napthoxy)-propionamide] and change of micro-organism were investigated in upland soil under different environmental conditions. Half-lives of degradation were 28.3 days in the sterile soil and 14.6 days in the nonsterile soil, respectively. These results suggest that microorganism remarkably affected the decomposition of napropamide. Napropamide was rapidly degraded in order of 60% > 80% ${\geq}$ 40% soil moisture content of field water-holding capacity. Numbers of bacteria and total microbes in 60% moisture content was more than those in 40% moisture content. The more the napropamide degradation was rapid in lower soil pH. The total number of microorganism increased by lapse of time after treatment of napropamide at pH 5.5. The decomposition rate of napropamide was rapid in the order of $27^{\circ}C$ > $37^{\circ}C$ > $17^{\circ}C$. At $17^{\circ}C$ of soil temperature actinomycetes in napropamide treatment plot was more than these in nontreatment plot and also at $27^{\circ}C$ and $37^{\circ}C$ bacteria in napropamide treatment plot was more than those in nontreatment plot. Napropamide degradation was more rapid and number of microorganism was more abundant at the concentration of 10ppm than at that of 20ppm. The half-life of napropamide was longer in the clay loam soil than in the silty loam soil. The half times in laboratory test than in upland field. Numbers of microbes in the experiment under all the test environmental condition was not significantly different between treatment and nontreatment of napropamide.

  • PDF

Effects of Pesticides on Soil Microflora -III. Effects of Pesticides on Microorganisms Related to the Nitrogen Cycle in the Submerged Soil (농약(農藥)이 토양미생물상(土壤微生物相)에 미치는 영향(影響)에 관(關)한 연구(硏究) -III. 농약(農藥)이 담수토양(湛水土壤)의 질소순환(窒素循環)에 관여(關與)하는 미생물(微生物)에 미치는 영향(影響))

  • Lee, Kyung-Bo;Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.149-159
    • /
    • 1988
  • This study was made to investigate the effect of pesticides on microflora to nitrogen metabolism, nitrification and nitrogen fixing activity in the submerged soil. The results are summarized as follows; Pesticides treatment leaded to the inhibition of $NH_4{^-}$-oxdizers, $NO_3{^-}$-reducer, and denitrifying bacteria population. $NO_2{^-}$-oxdizers were inhibited by cabamate compounds, carbofuran and MIPC. Simetryne seemed to stimulate the denitrifying bacteria at 60 days after incubation. Generally, formation of $NO_2{^-}$ and $NO_3{^-}$ tended to decrease by pesticides application. Pesticides application stimulated Azotobacter and Clostridia populations, while simetryne inhibited Athiorhodaceae and Thiorhodaceae. However acephate seemed to be stimulatory to blue-geen algae. $C_2H_2$-reducing activity by acephate was clearly appeared. The change of $C_2H_2$-reducing activity did not seems to be affected by pesticides application.

  • PDF

Crop Rotation in Paddy Soil Exhibiting Crop Failure Following Replanting: Effect on Soil Chemical Properties, Soil Microbial Community and Growth Characteristics of 2-Year-Old Ginseng (인삼 논재배 연작지에서 윤작물 재배가 토양화학성, 토양 미생물상 및 2년생 인삼의 생육에 미치는 영향)

  • Lee, Sung Woo;Park, Kyung Hoon;Lee, Seung Ho;Jang, In Bok;Jin, Mei Lan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.294-302
    • /
    • 2016
  • Background: Crop rotation plays an important role in improving soil chemical properties, minimizing the presence of disease pathogens, and assists in neutralizing autotoxic effects associated with allelochemicals. Methods and Results: Five rotation crops of sudan grass, soybean, peanut, sweet potato, and perilla were cultivated for one year with an aim to reduce yield losses caused by repeated cropping of ginseng. In 2-year-old ginseng grown in the same soil as a previous ginseng crop, stem length and leaf area were reduced by 30%, and root weight per plant was reduced by 56%. Crop rotation resulted in a significant decrease in electrical conductivity, $NO_3$, and $P_2O_5$ content of the soil, whereas organic matter, Ca, Mg, Fe, Cu, and Zn content remained-unchanged. Soil K content was increased following crop rotation with sudan grass and peanut only. Rotation with all alternate crops increased subsequent ginseng aerial plant biomass, whereas root weight per plant significantly increased following crop rotation with perilla only. A significant positive correlation was observed between root rot ration and soil K content, and a significant negative correlation was observed between ginseng root yield and the abundance of actinomycetes. Crop rotation affected the soil microbial community by increasing gram negative microbes, the ratio of aerobic microbes, and total microbial biomass whereas decreases were observed in actinomycetes and the ration of saturated fatty acids. Conclusions: In soil exhibiting crop failure following replanting, crop rotation for one year promoted both soil microbial activity and subsequent ginseng aerial plant biomass, but did not ameliorate the occurrence of root rot disease.

Growth Characteristics and Ginsenoside contents of Korean Ginseng (Panax ginseng C.A. Meyer) by Green Manure Crops (녹비작물 재배에 따른 인삼의 생육과 진세노사이드 함량)

  • Seong, Bong-Jae;Han, Seong-Ho;Kim, Sun-Ick;Kim, Gwan-Hou;Lee, Ka-Soon;Kim, Hyun-Ho;Won, Jun-Yeon;So, Jung D.;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.364-368
    • /
    • 2014
  • This study investigated ginseng growth and ginsenoside contents after control a reserved ginseng cultivation land using various green manure crops for stable ginseng cultivation. Followings are results obtained from this research. After cultivate the green manure crops, microbial flora in soil was diversified, organic matter and total-N content increased, but salt content decreased. The highest output obtained from the wheat cultivated area among various green manure corps. Growth of shoot and root of two years old ginseng increased significantly at the green manure crop cultivated area. Specially, the wheat cultivated area was the most effective in growth. Also, the rate of the leaf discoloration at the aerial part and the rusty root at the root was the least at the wheat cultivation area. Meanwhile, the ginsenoside content was the most at the wheat cultivation area. Thus, the reserved ginseng cultivation land could be managed by cultivating wheat for effective ginseng growth.