• Title/Summary/Keyword: 토양제염

Search Result 145, Processing Time 0.024 seconds

A Study on The Assessment of Treatment Technologies for Efficient Remediation of Radioactively-Contaminated Soil (방사성 오염 토양의 효율적 복원을 위한 처리기술 평가 연구)

  • Song, Jong Soon;Shin, Seung Su;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • Soil can be contaminated by radioactive materials due to nuclide leakage following unexpected situations during the decommissioning of a nuclear power plant. Soil decontamination is necessary if contaminated land is to be reused for housing or industry. The present study classifies various soil remediation technologies into biological, physics/chemical and thermal treatment and analyzes their principles and treatment materials. Among these methods, this study selects technologies and categorizes the economics, applicability and technical characteristics of each technology into three levels of high, medium and low by weighting the various factors. Based on this analysis, the most applicable soil decontamination technology was identified.

Effect of Flooding Treatment on the Desalting Efficiency and the Growth of Soiling and Forage Crops in a Sandy Soil of the Iweon Reclaimed Tidal Land in Korea (이원간척지 사질 염류토양의 담수제염처리가 제염효과와 녹비.사료작물의 생육에 미치는 영향)

  • Sohn, Yong-Man;Kim, Hyun-Tea;Jeon, Geon-Yeong;Song, Jae-Do;Lee, Jae-Hwang;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.16-24
    • /
    • 2010
  • Effect of flooding on the desalting efficiency and the growth of sudan grass, barnyard grass, sesbania and corn was studied in a sandy soil of the Iweon reclaimed tidal land. Flooding plots were treated by 400 (one time flooding), 800 (two times flooding), and 1,200 mm(three times flooding) of water, respectively, and then soil salinities of the treated plots were compared with salinity of the control plot (not flooded) for estimation of desalting effect. Desalting ratio of 1,200 mm treatment was 78.3% for depth 0-20 cm, 70.5% for depth 20-40 cm and 60.8% for depth 40-60 cm, and then the soil salinity reached at 3~6 dS $m^{-1}$. Consequently, it was considered that sandy saline soil was satisfactorily desalted for upland crops to be cultivated by 1,200 mm flooding, but insufficiently desalted by 400 mm and 800 mm flooding because of high salinity ranged 5~14 dS $m^{-1}$ even after flooding treatment. In addition, it was estimated that soil salinity should be controled lower than 7.7 dS $m^{-1}$ in order to obtain more than 80%of crop emergence when four crops are simultaneously cultivated by inter- or mixed cropping in a field. Dry matter yields (kg $10a^{-1}$) was 1,068 for sudan grass, 696for barnyard grass, 1,426 for sesbania, and 1,164 for corn by 1,200 mm flooding treatment, but only 46.8~74.3% by 800 mm flooding treatment and 2.9~25.5% by 400 mm flooding treatment. Therefore, it is concluded that the flooding treatment more than 1,200 mm is necessary for satisfactory desalinization in order for the low salt tolerance crops to be cultivated in the sandy reclaimed tidal land.

선택성 이온교환수지에 의한 Cs 함유 토양 제염폐액 정화

  • 원휘준;김계남;오원진;정종헌
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.131-132
    • /
    • 2004
  • 원자력연구소에 보관 중인 오염 토양폐기물을 토양 세척법으로 제염하여 비 방사성폐기물화 한다면 그 부피를 10% 이하로 저감시킬 수 있으며 연구소의 고체 방사성폐기물 저장 용량을 크게 늘릴 수 있다. 1988년 발견 당시 오염 토양 폐기물의 주요 방사성 핵종은 Co-60 이었는데 시간경과에 따라 Cs-134, 137 이 주요 방사성 핵종이 되었다. 오염토양 폐기물의 60 % 이상은 방사능 농도가 극히 낮아 물리적으로 입도를 분리하거나 수 세척에 의해 비 방사성폐기물화 할 수 있음을 파악하였다.(중략)

  • PDF

Laboratory Study on Changes in Hydraulic Conductivity and Chemical Properties of effluent of Soil During Desalinization (간척지(干拓地) 제염과정(除鹽過程)에서 일어나는 토양(土壤)의 수리전도도(水理傳道度)와 유출액(流出液)의 화학적(化學的) 특성변화(特性變化)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Yoo, Sun-Ho;Lee, Sang-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.1
    • /
    • pp.3-10
    • /
    • 1988
  • A laboratory study was carried out to investigate the effects of application level of soil amendments, mixing method of soil amendments, and compost treatment on desalinization by examining the changes in hydraulic conductivity and chemical properties of effluent of the soil during desalinization. 1. The treatment of soil amendments brought about the increase in hydraulic conductivity. 2. The higher the application level of a soil amendment, the higher the hydraulic conductivity and the shorter the time elapsed to complete the desalinization. 3. Complete mixing of calcium compounds was more effective for desalinization than surface mixing. 4. The compost treatment induced the rise in pH and therefore brought about the remarkable drop in hydraulic conductivity. 5. During the desalinization, the changes in physical and chemical properties of the soil were influenced by the kind and application level of soil amendments, mixing method of soil amendment, and compost treatment.

  • PDF

Optimum Remediation Conditions of Vertical Electrokinetic-Flushing Equipment to Decontaminate a Radioactive Soil (방사성토양 복원을 위한 수직형 동전기-세정장치의 최적제염조건 도출)

  • Kim, Gye-Nam;Yang, Byeong-Il;Moon, Jei-Kwon;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.153-160
    • /
    • 2009
  • Vertical electrokintic-flushing remediation equipment was developed for the remediation of a radioactive soil near nuclear facilities. An optimum reagent was selected to decontaminate the radioactive soil near nuclear facilities with the developed vertical electrokintic-flushing remediation equipment, and the optimum remediation conditions were established to obtain a higher remediation efficiency. Namely, acetic acid was selected as an optimum reagent due to its higher remediation efficiency. When the electrokinetic remediation and the electrokinetic-flushing remediation results were compared, the removal efficiency of 4.6% and the soil waste solution volume of 1.5 times were increased in the electrokinetic remediation. When the potential gradient within an electrokinetic soil cell was increased by two times (4.0 V/cm), the removal efficiencies of $Co^{2+}$ and $Cs^+$ were increased by about 4.3%($Co^{2+}$ : 98.9%, $Cs^+$ : 96.7%). Also, when the reagent concentration was increased from 0.01M to 0.05M, the removal efficiency of $Co^{2+}$ was increased but that of $Cs^+$ was decreased. Therefore, the optimum remediation conditions were that the acetic concentration was $0.01M{\sim}0.05M$, the potential gredient was 4 V/cm, the injection of reagent 2.4ml/g, and the remediation period was 20days.

  • PDF

Desalinized Effect of Some Vegetable Crops in Salinized Soil (염류축적 토양에서 몇 가지 채소의 토양 염류 제염 효과)

  • Kim, Il-Seop;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.396-399
    • /
    • 2006
  • This study was conducted to investigate the desalinizing effect of some vegetable crops (beet, crown daisy, kale, lettuce, spinach, sweet com, and tomato) in salinized soil. The soil was treated with highly concentrated nutrient solutions and the growth of these crops was compared and soil salinity was monitored. The plant height of lettuce and crown daisy inhibited severely in with EC $5dS{\cdot}m^{-1}$ salinized soil. Soil EC level was the lowest in soil where tomato was cultivated followed by corn and kale. The residual level of $NO_3$ was higher in soils used for cultivation of corn, tomato, and kale, that of K was higher in soils used for cultivation of corn, tomato, and beet, and That of $P_2O_5$ was higher in soils used for cultivation of corn and tomato. Although the desalinizing effect was greatest by tomato and corn after 60 days of cultivation. Quality of the these crops was low and the cultivation periods of these crops overlapped with that of the main crops. Kale, on the other hand showed less growth inhibition in salinized soil, greatest desalinating effect based on fresh weight. In addition this crop only needs 30 days of cultivation period. Therefore, kale was most efficient crop in desalinizing considering crop quality, a short cultivation period, and nonoverlapping cultivation time with the main crops.

A Study on the Decontamination Performance of Cesium by Soil Washing Process With Flocculating Agent (응집제를 적용한 토양세척 공정에서의 세슘 제염 성능 평가 연구)

  • Song, Jong Soon;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2018
  • Radioactive substances, especially $^{137}Cs$ discharged in the course of Nuclear Power Plant Accident or maintenance of power plants, cause contamination of the soil. For habitation of residents and reuse of industrial land, it is inevitably necessary to decontaminate the soil. This study examines a soil washing process that has actually been used for washing of radioactive-contaminated soil. The soil washing process uses a washing agent to weaken surface tension of the soil and cesium, separating cesium from the soil. In this study, in order to raise the efficiency of the process, a flocculating agent was added to the washing water to remove fine soil and cesium. The cesium concentrations before and after applying the flocculating agent to cesium solution were measured through ICP-OES. When using 0.1 g of J-AF flocculating agent in the experiment, the maximum Cs removal performance was approximately 88%; the minimum value was 67%. Species combinations between cesium and soil were predicted using Visual MINTEQ Code; the ability to reuse the washing water or not, and the removal rate of the fine soil, determined via measurement of the turbidity after applying the flocculating agent, were determined.