• Title/Summary/Keyword: 토양공극수

Search Result 188, Processing Time 0.03 seconds

Economic effect of machine-transplanted rice in no-till Chinese milkvetch cropping systems (무경운 자운영 피복 벼 기계이앙의 경제적 효과)

  • Lee, Young-Han;Shon, Daniel;Heo, Jae-Young;Lee, Seong-Tae;Hong, Kwang-Pyo;Song, Won-Doo;Rho, Chi-Woong;Choe, Zhin-Ryong;Yun, Han-Dae
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.282-282
    • /
    • 2009
  • 환경오염에 대한 우려 및 안전농산물에 대한 소비자욕구 증대로 유기농산물 시장규모가 최근 3년간 2.8배 성장 추세이다. 친환경농산물 인증면적은 '00년 2,039 ha에서 '07년 122,882 ha로 급격히 증가하고 있으나 생태적 원리에 부합된 벼 재배기술이 부족하며 특히 무경운 논토양에 대한 경영분석 자료는 거의 없는 실정이다. 본 연구는 유기농업기술을 종합적으로 투입한 시범마을을 육성하기 위하여 하동군 양보면 예성마을 1ha를 대상으로 관행농업과 무경운 자운영 피복 벼 기계이앙을 실증하여 경제적인 효과를 검토하였다. 토양 관리를 위해 2007년 9월 10일에 자운영을 3 kg/10a 파종하여 겨울철 토양 생태계를 유지하였고 화학비료나 농약을 사용하지 않았다. 볍씨 소독은 마른 종자를 60 $^{\circ}C$에서 8분간 침지하는 열탕침법을 이용하였으며 논 물담기는 5월 28일경 15 cm 이상 깊게 하여 자운영이 잘 분해되도록 하였다. 기계이앙은 6월 10일경 표면 1 cm 이내의 물 깊이에서 식부장치를 최대한 깊게하고 주수는 주당 5-7주 정도로 실시하였으며 기계이앙 후에는 5일 정도 물을 담지 않고 그대로 두고 그 후 물을 10 cm 이상 깊게 하여 잡초발생을 억제하였다. 중간낙수는 7월 10일경 1회 처리하였고 수확기 낙수는 9월 23일 실시하였다. 무경운 처리구의 이앙전 토양 가밀도는 관행 1.30 g $cm^{-3}$ 비해 0.09 g $cm^{-3}$ 정도 가벼운 것으로 나타났고 공극률은 관행 50.8%에 비해 3.5% 높은 것으로 나타났으며 특히 수분률이 3.5% 높았다. 무경운 자운영 피복 기계이앙 처리구의 잡초발생 건물량은 7월 4일경 피 8.8 g $m^{-2}$, 여뀌 10.8 g $m^{-2}$ 이었으며 9월 18일에는 피 16.0 g $m^{-2}$, 여뀌 12.3 g $m^{-2}$였다. 수확기 관행처리구의 주당 이삭수는 16.7개, 수당립수는 101개, 천립중은 25.4 g, 등숙비율은 82.3%로 수량은 517 kg $10a^{-1}$ 였으며 무경운 자운영 피복 기계이앙은 주당 이삭수가 14.1개, 수당 립수는 103개, 천립중은 26.2 g, 등숙비율은 91.2%로 수량이 456 kg $10a^{-1}$였다. 무경운 자운영피복 벼 기계이앙은 기경작업이나 시비작업 등이 없으므로 노동력이 60% 절감되었으며 농가소득은 5% 증대되었다. 따라서 농업분야 저탄소 녹색성장과 관련하여 자연 생태계를 보전하면서 농가소득을 유지할 수 있는 방법으로 무경운 자운영 피복 벼 기계이앙이 효과적인 것으로 판단되었다.

  • PDF

Effect of Fine Sand and Briquette Ash Dressing on Diluvial Clayey Soils (Hwadong Series) (홍적태지(洪積台地)의 식질답(埴質畓)(화동통(華東統))에 대(對)한 세사(細砂) 및 연탄(煉炭)재의 객토효과(客土效果))

  • Jung, Youn-Tae;No, Young-Pal;Park, Eun-Ho;Park, Chang-Young;Seong, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 1984
  • To improve the physico-mechanical characteristics of heavy clayey paddy soils(Hwadong series) on Diluvial terrace after application of fine sand and briquette ashes, barley and rice were cultivated for 2 years. The influences of sand and briquette ashes on soil properties and on the crops were summarized as follows: 1. Application of the adding materials could not affect the yield of rice but barley yields were increased significantly about 18-19% in the plots of sand 100t/10a(clay 15% adjusted) and in the plots of briquette ashes. 2. The porosity and the content of water stable aggregates were decreased in the plots of sand and briquette ash adding. The chemical properties were slightly decreased in the plots of sands while the contents of av. $SiO_2$: and extr K were increased in the plots of briquette ashes. 3. Soil mechanical properties such as cone penetration resistance, shearing resistance and plastic index etc. were decreased while the friction resistance increased in the plots of sand and briquette ash treatments. Consequently, the adaptability to mechanization was increased. 4. The content of rice roots in subsoils (10-20cm) were increased in the plots of sand and briquette ash treatments.

  • PDF

Physico-Chemical Properties of Organically Cultivated Upland Soils (유기농경지 밭 토양의 물리화학적 특성)

  • Lee, Cho-Rong;Hong, Seung-Gil;Lee, Sang-Beom;Park, Choong-Bae;Kim, Min-Gi;Kim, Jin-Ho;Park, Kwang-Lai
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.875-886
    • /
    • 2015
  • The upland soils (56 samples) from organic farms in Gyeonggi-do (12 sites), Gangwon-do (8 sites), Chungcheong-do (14 sites), Gyeongsang-do (4 sites), Jeollado (18 sites) in Korea were collected and their physical and chemical properties were analyzed by RDA's methods. In the results of physical property, the bulk density of soils averaged $1.14Mgm^{-3}$ (surface soil), $1.38Mgm^{-3}$ (subsoil), respectively. The porosity of them was 57%, 48%. Organically managed soil's (OS) bulk density was lower than conventional soil's but OS's porosity was a little higher than conventionally managed soil in surface soil. The depth of plough layer in organically managed soils was 21.2 cm indicating that the organic farming had good effect on soil physical property. In the results of chemical property, the surface soil pH was 6.9 and the contents of organic matter (OM) was $26gkg^{-1}$, available phosphate (Avail. $P_2O_5$) was $554mgkg^{-1}$, exchangeable calcium (Exch. Ca) was $8.9cmol_ckg^{-1}$, exchangeable potassium (Exch. K) was $0.89cmol_ckg^{-1}$, exchangeable magnesium (Exch. Mg) was $2.0cmol_ckg^{-1}$. The subsoil pH was 6.8 and the contents of OM was $21gkg^{-1}$, avail. $P_2O_5$ was $491mgkg^{-1}$, exch. Ca was $7.9cmol_ckg^{-1}$, exch. K was $0.68cmol_ckg^{-1}$, exch. Mg was $1.8cmol_ckg^{-1}$. The nutrient accumulation emerged in organic farming. Compared to the optimum nutrient range for the conventional upland soils, the exceed rate of pH, OM, available phosphate, and exchangeable Ca, K, and Mg was 79, 52, 64, 84, 66% and 55%, respectively, which mainly resulted from the over-application of lime materials or livestock manure compost. With these results it is suggested that organic farm need to reduce the use of inputs, which make soil alkalification or nutrient accumulation. More study on effects of inputs on lowering soil pH from alkalification could help organically managed soil to be improved.

Well Loss in Fractured Rock Formation with Radial Flow during Pumping Test (양수시험시 방사상흐름을 보이는 균열암반 대수층에서의 우물손실)

  • 이철우;이대하;정지곤;김구영;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • Pumping tests were carried out from seven wells in fractured rocks. The time-drawdown data were obtained from pumping wells and corrected for the elapsed time of step drawdown test using Cooper-Jacob's method. A statistical method. the least square of error, was used to yield the coefficient of aquifer losses, the coefficient of well losses, and the power which indicates the severity of the turbulence. The values of the power range from 1.65 to 6.48. The well losses result mainly from turbulent flow caused by radial flow nearby pumping wells. The turbulent flow depends on Reynolds number. Since the hydraulic characteristics of fractured rocks control the fluid velocity, the value of the power is an important factor to understand the aquifer system of fractured rocks.

Evaluating Effects of Membrane Filter Pore Sizes on Determination of Dissolved Concentrations of Major Elements in Groundwater and Surface Water Near Nakdong River (낙동강변 지하수 및 지표수의 주요원소 용존 농도 결정에 대한 막필터 공극 크기의 영향 분석)

  • Kim, Bo-A;Koh, Dong-Chan;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.31-40
    • /
    • 2015
  • Various types of inorganic and organic colloids are present in natural water including groundwater. Previous studies showed that Fe, Mn and Al are colloid-forming elements and dissolved concentrations can be erroneous for these elements if water samples are not properly filtered. Dissolved concentrations of elements including Ca, Na, Mg, K, Fe, Mn, Si and Al in groundwater from alluvial and bedrock aquifers, and surface water near Nakdong River were determined to evaluate effects of colloids on dissolved concentrations in natural water samples using various pore sizes of filters. Groundwater is mostly anoxic and have elevated concentrations of Fe and Mn, which provides a unique opportunity to observe the effects of colloids on dissolved concentrations of colloid-forming elements. Membrane filters with four kinds of pore sizes of 1000 nm, 450 nm, 100 nm, and 15 nm were used for filtration of water samples. Concentrations of dissolved concentrations in each filtrate did not show significant differences from 1000 nm to 100 nm. However, concentrations of all elements considered were decreased in the filtrates obtained using 15 nm pore size filters by 10 to 15% compared to those using 450 nm except for bedrock groundwater. Al in surface water showed a distinct linear decrease with the decrease of filter pore sizes. These results showed that 100 nm pore size had little effect to remove colloidal particles in alluvial groundwater and surface water in our study. In contrast, significant concentration decreases in 15 nm pore size filtrates indicate that the presence of 15 to 100 nm colloidal particles may affect determination of dissolved concentrations of elements in natural water.

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Improvement of Sand Dam Design for Safety and Increased Water Storage (안전과 저수량 증대 측면의 샌드댐 설계 개선 방안)

  • Seo, Dong Gun;Suh, Jong Won;Chae, Jeong Uk;Kim, Sung Jun;Yun, Tae Sup;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.279-288
    • /
    • 2020
  • Sand dams are formed by installing beams across rivers and filling the secured space with water and a permeable material, such as sand, which stores the water in available pore space. These structures have mainly been reported in Kenya, Africa. This study proposes a sand dam design that improves structural safety and water intake. First, to increase the stability of the concrete wall of the dam, steel barbed wire connections are proposed for construction. Second, by using geotextile fabrics, evaporation may be reduced from 45% to 8%, and horizontal permeable discharge could be reduced markedly, therefore improving water storage capabilities. In addition, the water intake increased by ~2.4 times that of the previous design. Third, filtration efficiency is improved by selecting a sedimentary site for improved water quality. Finally, the installation of a tensiometer is suggested for monitoring the sand dam.

One Dimensional Heat Flow Equation Incorporated with the Vertical Water Flow in Paddy Soils I. An Analytical Solution and It's Application to Tow Different Paddy Soils with Different Percolation Rates (답토양(沓土壤)에 있어서 물 이동(移動)이 복합(複合)된 일차원(一次元) 열이동방정식(熱移動方程式)에 관(關)하여 I. 분석해(分析解)와 투수속도(透水速度)가 다른 두 답토양(沓土壤)에 대(對)한 적용(適用))

  • Jung, Yeong-Sang;Kim, Lee-Yul;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.179-184
    • /
    • 1982
  • To describe a mathematical heat transfer model in saturated paddy soils, an analytical solution of the heat flow equation incorporated with the heat transfer by mass flow of water was obtained under the assumptions: 1) the diurnal (or annual) changes in temperature at a depth follow harmonic curves, 2) the temperature at the infinite depth be constant and 3) the temperatures of soil and water at the one depth be identical. The calculation of thermal diffusivities of the soil is possible with the known values of the physical parameters of each component in the soil matrix (heat capacity, density and porosity), percolation rate and the minimum and maximum temperatures at two different depths. The calculated thermal diffusivities using the solution were $9.5cm^2/hr$ for the loam soil with the percolation rate of 0.88cm/day and $13.9cm^2/hr$ for the sandy loam soil with the percolation rate of 2.64 cm/day.

  • PDF

Ammonium Nitrate Explosion Technique for the Establishment of Orchard (산지과수(山地果樹)의 재식(栽植)을 위(爲)한 폭약이용(爆藥利用)에 관(關)한 연구(硏究))

  • Yoo, S.H.;Koh, K.C.;Park, M.E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.169-178
    • /
    • 1980
  • Ammonium nitrate explosion technique was applied to seek a convenient method for the establishment of orchard on the undulating to rolling land or hill side of Pogog clay loam soil (Fine Aquic Fragiudalfs : Planosols) having high bulk density and low permeability. Explosions were made by three ammonium nitrate explosives placed in the bottom of 90cm deep auger hole with every 2m interval (Explosion I) and 4m interval (Explosion II) respectively. The effect of the explosion on physical properties of the soil was investigated and compared with the effect induced by manual digging, excavation of $1m{\times}1m$ in diameter and depth (Manual digging I) and trenching of $1m{\times}1m{\times}25m$ in width, depth, and length (Manual digging II) respectively. The results investigated after 7 months from the treatments are summarized as follows : 1. The explosion or manual digging reduced bulk density and hardness, whereas the treatments increased porosity, hydraulic conductivity, and available moisture-holding capacity of the soil. 2. The explosion of 4 m interval improved physical properties of the soil to optimum level up to 70cm of the distance from the explosion core in the range of depth 0-60cm, while in the case of depth from 60 to 100cm the optimum level was achieved only within 50cm radius. 3. When exploded in 2 m interval, the effect in the 0-60cm depth was overlapped between two explosion cores. The effect in the depth between 60 and 100cm, however, was found to be independent of the explosion intervals. 4. The manual digging was only costly and laborious but effective only within the work-up zone. 5. For the soils having bulk density higher than $1.4g/cm^3$ after the treatments, the field capacity determined 72 hours after a heavy rain was lower than the laboratory estimate at the suction of 1/3 atm. 6. The top growth of apple tree for the first year revealed that the explosion seemed better treatment than the manual digging, even though the difference was insignificant.

  • PDF

Analysis of Consistency and Accuracy for the Finite Difference Scheme of a Multi-Region Model Equation (다영역 모델 방정식의 유한차분계가 갖는 일관성과 정화성 분석)

  • 이덕주
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • The multi-region model, to describe preferential flow, is an equation representing solute transport in soils by dividing soil into numerous pore groups and using the hydraulic properties of the soil. As the model partial differential equation (PDE) is solved numerically with finite difference methods. a modified equivalent partial differential equation(MEPDE) of the partial differential equation of the multi-region model is derived to analyze the accuracy and consistency of the solution of the model PDE and the Von Neumann method is used to analyze the stability of the finite difference scheme. The evaluation obtained from the MEPDE indicated that the finite difference scheme was found to be consistent with the model PDE and had the second order accuracy The stability analysis is performed to analyze the model PDE with the amplification ratio and the phase lag using the Von Neumann method. The amplification ratio of the finite difference scheme gave non-dissipative results with various Peclet numbers and yielded the most high values as the Peclet number was one. The phase lag showed that the frequency component of the finite difference scheme lagged the true solution. From the result of the stability analysis for the model PDE, it is analyzed that the model domain should be discretized in the range of Pe < 1.0 and Cr < 2.0 to obtain the more accurate solution.

  • PDF