• Title/Summary/Keyword: 토목 구조물

Search Result 1,205, Processing Time 0.026 seconds

Application of Nonlocal Anisotropic Damage Model for the Reinforced Concrete Structures (철근콘크리트 구조물에 대한 비국소 이방성 손상모델의 적용)

  • Woo, Sang Kyun;Kwon, Yong Gil;Han, Sang Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.309-316
    • /
    • 2010
  • This paper proposed a nonlocal anisotropic damage model to simulate the behavior of plain and reinforced concrete structures that are predominantly tensile and compressive load. This model based on continuum damage mechanics, used a symmetric second-order tensor as the damage variable. For quasi-brittle materials, such as concrete, the damage patterns were different in tension and in compression. These two damage states were modeled by damage evolution laws ensuring a damage tensor rate proportional to the total strain tensor in terms of principal components. To investigate the effectiveness of proposed model, the double edge notched specimen experimented by nooru-mohamed and reinforced concrete bending beam were analyzed using the implementation of the proposed model. As the results for the simulation, the nonlocal anisotropic damage model with an adequate control of rupture correctly represented the crack propagation for mixed mode fracture. In the structural failure of reinforced concrete bending beam, the proposed model can be showed up to a very high damage level and yielding of the reinforcements.

A Study on the Development of Flowable Fill Materials for H-pile (가시설 H-pile의 유동화 채움재 개발)

  • Jeong, Won-Jeong;Im, Jong-Chul;Kim, Tae-Hyo;Joo, In-Gon;Kang, Hyun-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.39-50
    • /
    • 2011
  • Nowadays, H-piles are usually used as temporary retaining walls, and sometimes buried in the ground after construction. The purpose of this study is the development of flowable fill materials that are easy to fill holes of retaining wall structure and minimize friction during pulling out H-pile. The first test was performed to decide mix proportion that is reasonable for purpose, in the second test, direct shear test was performed to get pullout resistance between flowable fills material and H-pile, and one dimensional consolidation test was performed to analyze the compressibility. In the test result, it showed that flowable fill material mix proportion is 350-450% of water, 70-100% of cement and 70-100% of sand based on the bentonite weight.

Analysis of influence factors on the construction of the check dam to reduce damage caused by debris flow (토석류 피해 저감을 위한 사방댐 설계 모의분석)

  • Lee, Seungjun;An, Hyunuk;Kim, Minseok;Ko, Heemin;Ku, Hyeonseung;Yu, Seungheon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.92-92
    • /
    • 2022
  • 산 사면의 지반이 붕괴되어 흙, 모래, 자갈 그리고 물 등이 혼합하여 유동하는 토석류는 예측과 대비가 어려운 자연재해 중 하나 이다. 특히, 강우로 인해 발생하는 토석류의 경우 매우 빠르게 유동하기 때문에 피해 예측이 제한적이다. 이러한 토석류가 도심지역 또는 마을주변에서 발생할 경우 많은 인명 및 재산 피해가 발생한다. 따라서 토석류의 유동을 최소화시키기 위해선 1차적으로 수치모형을 통한 전반적인 유동 및 피해 규모 예측이 이루어져야 하며, 이러한 분석을 바탕으로 사방댐과 같은 구조물의 효율적인 설계가 이루어져야 한다. 이에 수치모형을 통해 토석류의 유동을 분석하고자 하는 많은 연구가 진행된 바 있으며, 사방댐 설계 분석 또한 수치모형과 실험을 통해 연구된 바 있다. 선행연구들에 따르면, 1) 발생부로부터의 거리, 2) 토석류 에너지의 감소, 3) 침식-연행 작용, 4) 사방댐의 용량 등이 효율적인 사방댐 설계에 영향을 미친다고 분석된 바 있다. 하지만 위의 항목들에 대한 종합적인 비교분석은 미비한 실정이다. 따라서 본 연구에선 위에서 제시한 4가지의 항목들을 바탕으로 사방댐 설계에 중요한 요소를 평가하고 산정하고자 한다. 토석류의 유동과 사방댐을 모의분석하기 위해 Deb2D 수치모형을 활용하였으며, Voellmy 유변학적 모형과 침식-연행-퇴적 작용을 분석할 수 있는 알고리즘을 사용하여 토석류의 유동을 현실에 가깝게 모의하였다. 2011년 서울 우면산에서 발생한 산사태 유역들 중에서 래미안 아파트 유역과2019년 강원도 갈남리에서 발생한 산사태를 대상지구로 선정하였다. 연구 결과에 따르면 4가지 요소들 중에서 사방댐의 용량이 효율적인 사방댐 설계에 가장 주요한 요인으로 분석되었다.

  • PDF

Evaluation of Lateral Strength and Ductility of Velcro Reinforced RC Columns with Finite Element Analysis (유한요소해석을 통한 벨크로로 보강된 RC 기둥의 횡방향 강도 및 연성 능력 평가)

  • Kim, Sang-Woo;Kim, Kyeong-Min;Kim, Geon-Woo;Lee, Su-Young;Kim, Jin-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • Recently, with frequent earthquakes around the world, research on seismic design and seismic reinforcement of reinforced concrete facilities has been actively conducted from earthquakes. In particular, columns, which are compressed members of reinforced concrete structures, are vulnerable to lateral forces caused by earthquakes, so an appropriate seismic reinforcement method is required. Therefore, this study intended to develop Velcro seismic reinforcement method that is quick and easy to construct. For the development of Velcro seismic reinforcement, the adhesion and tensile strength of the existing industrial velcro was improved. A direct tensile test was also conducted to compare the tensile performance of the newly-developed velcro seismic reinforcement to industrial one. In addition, numerical analysis was performed to predict the seismic performance of RC columns reinforced by industrial and newly-developed velcro. Based on the analysis results, the strength and ductility of the non-seismic and velcro-reinforced RC column were reviewed. The analysis confirmed that both the strength and ductility of non-seismic RC columns reinforced by industrial and newly-developed velcro increased, but the seismic performance of the newly-developed Velcro reinforcement is better than that of industrial velcro.

Shape Optimization of the Plane Truss Structures by Mixed Cooridination Method (혼합조정법(混合調整法)에 의한 평면(平面) 트러스 구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(硏究))

  • Lee, Gyu Won;Lim, Jeong Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.55-68
    • /
    • 1991
  • In this study, Mixed coordination method was selected to optimize the shape of the truss structures which takes multi-loading condition, allowable stress, buckling stress, displacement constraints into consideration. The structure was devided into substructures by Goal coordination method and the substructures were optimized by model coordination method which used two-level technique. Therefore the number of design variables and constrints can be decreased considerable. Under the condition of the same disign, the weight of truss structures can be decreased more considerable by means of optimizing even the shape of truss than by means of optimizing the section of truss while fixing geometrical configuration of it, even though there might be a little difference according to the early geomatrical shape of the truss and the design condition. Thus, the shape optimization of truss structures which utilize the results of this study can be helpful to the economical design of truss structures.

  • PDF

Damage-Spread Analysis of Heterogeneous Damage with Crack Degradation Model of Deck in RC Slab Bridges (RC 슬래브교의 바닥판 균열 열화모델에 따른 이종손상 확산 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Kim, Jae-Hwan;Part, Ki-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.93-101
    • /
    • 2022
  • RC Slab bridges in Korea account for more than 70% of the total bridges for more than 20 years of service. As the number of aging structures increases, the importance of safety diagnosis and maintenance of structures increases. For highway bridges, cracks are a main cause of deck deterioration, which is very closely related to the decrease in bridge durability and service life. In addition, the damage rate of expansion joints and bearings accounts for approximately 73% higher than that of major members. Therefore, this study defined damage scenarios combined with devices damages and deck deterioration. The stress distribution and maximum stress on the deck were then evaluated using design vehicle load and daily temperature gradient for single and combined damage scenarios. Furthermore, this study performed damage-spread analysis and predicted condition ratings according to a deck deterioration model generated from the inspection and diagnosis history data of cracks. The heterogeneous damages combined with the member damages of expansion joints and bearings increased the rate of crack area and damage spread, which accelerated the time to reach the condition rating of C. Therefore, damage to bridge members requires proper and prompt repair and replacement, and otherwise it can cause the damage to bridge deck and the spread of the damage.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.

Performance Evaluation of Fiber-Reinforced Concrete Compression Members Transversely Constrained by BFRP (BFRP로 횡구속된 섬유 보강 콘크리트 압축부재의 성능평가)

  • Lee, Gyeong-Bok;Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • Corrosion and degradation of reinforced structures due to abnormal climates and natural disasters further accelerate the aging of structures. Coping with the decrease in structure performance, many old structures are being repaired and reinforced with low-weight and high-strength materials such as glass fiber composite material (GFRP). To further contribute, this paper focus on a more economical and eco-friendly material, basalt fiber composite (BFRP), which provide a more effective lateral constraint effect for seismic reinforcement. The main variables considered in this study are the curing temperature during the manufacturing of BFRP and the material characteristics of the target concrete member. The lateral constraint reinforcement effect was investigated through the evaluation of the performance of normal concrete and those with improved durability through fiber reinforcement. The reinforcement effect was 3.15 times for normal concrete and 3.72 times for fiber reinforced concrete, and the difference in reinforcement effect due to the improvement of the durability characteristics of the compression member was not significant. Lastly, the performance of the BFRP was compared with the results of the GFRP reinforcement from the previous study. The effect of the BFRP reinforcement was 1.18 times better than that of the GFRP reinforcement.

Floor Response Spectra with Structure-Equipment Interaction Effects by a Random Vibration Approach (주구조물과 설비의 상호작용을 고려한 층 응답스펙트럼의 추계론적 작성법)

  • Yun, Chung Bang;Son, Eun Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.37-43
    • /
    • 1991
  • An efficient method for generating floor response spectra with the structure-equipment interaction effects is proposed. Floor response spectra are computed from a prescribed ground response spectrum by a random vibration approach. Transfer function of equipment response for earthquake excitation is constructed directly from the modal properties of the individual structures. The method also can account for the nonproportional damping characteristics of the combined system.

  • PDF