• Title/Summary/Keyword: 토목 구조물

Search Result 1,374, Processing Time 0.03 seconds

Detection of Cavities Behind Concrete Walls Using a Microphone (마이크로폰을 이용한 콘크리트 벽체 배면의 공동 탐사)

  • Kang, Seonghun;Lee, Jong-Sub;Han, WooJin;Kim, Sang Yeob;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.19-28
    • /
    • 2022
  • Cavities behind concrete walls can adversely affect the stability of structures. Thus study aims to detect cavities behind concrete structures using a microphone in a laboratory model test. A small-scale concrete wall is constructed in a chamber, which is composed of a reinforced concrete plate and dry soil. A plastic bowl is then placed between the plate and soil to simulate a cavity behind the concrete structure. Leaky surface acoustic waves are generated by impacting the concrete plate using a hammer and are measured using a microphone. The measured signals are analyzed using natural frequencies, and cavity-free sections are evaluated. The test results show that the first natural frequency decreases at the cavity section due to the flexural vibration behavior of the plate. In addition, the amplitude corresponding to the first natural frequency decreases as the measurement location becomes farther from the cavity center and significantly decreases at the measurement locations near the rebars. This study demonstrates that a microphone may be useful to detect cavities behind concrete walls.

Method of Estimating Pile Load-displacement Curve Using Bi-directional Load Test (양방향 재하시험을 이용한 말뚝의 하중-변위곡선 추정방법)

  • Kwon Oh-Sung;Choi Yong-Kyu;Kwon Oh-Kyun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2006
  • For the last decade, the hi-directional testing method has been advantageous over the conventional pile load testing method in many aspects. However, because the hi-directional test uses a loading mechanism entirely different from that of the conventional pile load testing method, many investigators and practicing engineers have been concerned that the hi-directional test would give inaccurate results, especially about the pile head settlement behavior. Therefore, a hi-directional load test and the conventional top-down load test were executed on 1.5 m diameter cast-in-situ concrete piles at the same time and site. Strain gauges were placed on the piles. The two tests gave similar load transfer curves at various depth of piles. However, the top-down equivalent curve constructed from the hi-directional load test results predicted the pile head settlement under the pile design load to be about one half of that predicted by the conventional top-down load test. To improve the prediction accuracy of the top-down equivalent curve, a simple method that accounts for the pile compression is proposed. It was also shown that the strain gauge measurement data from the hi-directional load test could reproduce almost the same top-down curve.

Exploring the power of physics-informed neural networks for accurate and efficient solutions to 1D shallow water equations (물리 정보 신경망을 이용한 1차원 천수방정식의 해석)

  • Nguyen, Van Giang;Nguyen, Van Linh;Jung, Sungho;An, Hyunuk;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.939-953
    • /
    • 2023
  • Shallow water equations (SWE) serve as fundamental equations governing the movement of the water. Traditional numerical approaches for solving these equations generally face various challenges, such as sensitivity to mesh generation, and numerical oscillation, or become more computationally unstable around shock and discontinuities regions. In this study, we present a novel approach that leverages the power of physics-informed neural networks (PINNs) to approximate the solution of the SWE. PINNs integrate physical law directly into the neural network architecture, enabling the accurate approximation of solutions to the SWE. We provide a comprehensive methodology for formulating the SWE within the PINNs framework, encompassing network architecture, training strategy, and data generation techniques. Through the results obtained from experiments, we found that PINNs could be an accurate output solution of SWE when its results were compared with the analytical method. In addition, PINNs also present better performance over the Artificial Neural Network. This study highlights the transformative potential of PINNs in revolutionizing water resources research, offering a new paradigm for accurate and efficient solutions to the SVE.

A study on How to Improve the Work of Professional Landscape Construction in Preparation for the Reorganization of the Production System in the Construction Sector - Based on the Survey Results - (건설분야 생산체계 개편에 대비한 조경분야 전문공사업 업무 개선 방향 - 설문조사 결과를 중심으로 -)

  • Ahn, Myung June
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.33-45
    • /
    • 2024
  • The government is promoting the reorganization of the construction indusrty under the theme of reorganizing the production system. However, it has been pointed out that this is contrary to the increasingly specialized and technical skills of the landscaping field. Therefore, it is urgent to respond to the construction industry integration policy and improve an appropriate work system and the content of the landscape field. Therefore, this study investigated the intention of the industry to reorganize the production system and the production structure of the landscape field, so that it can be used as a reference for future changes. As a result of the survey, 1) the perception of the reorganization policy is a highly requesting step-by-step promotion that reflects the industry's will, 2) the system is divided into generalization and specialization and is highly opposed to integration, 3) appropriate design and construction costs are the most important directions for improving landscape construction projects, and 4) reestablishing the relationship with related civil engineering works is important for improving detailed construction types. Overall, it was pointed out that the current specialized landscape construction does not sufficiently reflect the changing landscape business and is only appropriate for subcontractors in other industries. Therefore, it is necessary to promote policies that reflect this. In the long run, it is urgent to establish the status of landscape construction as an independent object, and it is necessary to supplement the legal system and change the industry accordingly.

Distribution and Statistical Analysis of Discontinuities in Deep Drillcore (심부시추코어를 활용한 불연속면의 분포 특성 및 통계학적 해석)

  • Junghae Choi;Youjin Jung;Dae-Sung Cheon
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.415-427
    • /
    • 2024
  • This study undertook a quantitative analysis of the distribution of fractures in deep drillcore from a Precambrian metamorphic complex on the north face of Hongcheon-gun, Gangwon-do, Korea. The fracture distribution with depth, inclination of fractures, and grain size in the fracture zone were measured and statistical techniques applied to derive probability distributions of fracture intervals. Analysis of the inclination angles of fracture planes showed that sub-horizontal fractures are dominant, and fracture spacing is mainly ≤0.5 m, with a median of 0.09 m, first quartile of 0.04 m, and third quartile of 0.18 m, indicating very dense fracture development. Statistical analysis of joint properties was undertaken with fitting using five probability density functions (double Weibull, exponential, generalized logistic, gamma, and lognormal). The lognormal distribution (sum of squared errors, SSE = 2.80) yielded the best fit based on the sum of residual squares. Quantitative characterization of the fracture characteristics of deep bedrock in the Hongcheon area is important for various geotechnical applications such as groundwater flow modeling, slope stability assessment, and underground structure design. In future studies, it will be necessary to combine in situ stress measurements and geophysical surveys to determine the relationship between fracture development and the local stress field.

Analysis on Statistical Characteristics of Household Water End-uses (가정용수 용도별 사용량의 통계적 특성 분석)

  • Kim, Hwa Soo;Lee, Doo Jin;Park, No Suk;Jung, Kwan Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.603-614
    • /
    • 2008
  • End-uses of household water have been changed by a life style, housing type, weather, water rate and water supply facilities etc. and those variables can be considered as an internal and exogenous factors to estimate long-term demand forecasts. Analysis of influential factors on water consumption in households would give an explanation to cause on the change of trend and would help predicting the water demand of end-use in household. The purpose of this study is to analyze the demand trends and patterns of household water uses by metering and questionnaire such as occupation, revenue, numbers of family member, housing types, age, floor area and installation of water saving device, etc. The peak water uses were shown at Saturday among weekdays and July in a year based on the analysis results of water use pattern. A steep increase of total water volume can be found in the analysis of water demand trend according to temperature from $-14^{\circ}C$ to $0^{\circ}C$, while there are no significant variations in the phase of more than $0^{\circ}C$, with an almost stable demand. Washbowl water shows the highest and toilet water shows the lowest relation with temperature in correlation analysis results. In the results of ANOVA to find the significant difference in each unit water use by exogenous factors such as housing type, occupation, number of generation, residential area and income et al., difference was shown in bathtub water by housing type and shown in kitchen, toilet and miscellaneous water by numbers of resident. Especially, definite differences in components except washbowl and bathtub water, could be found by numbers of resident. Based on the result, average residents in a house should be carefully considered and the results can be applied as reference information, in decision making process for predicting water demand and establishing water conservation policy. It is expected that these can be used as design factors in planning stage for water and wastewater facilities.

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

A Study on Shape Optimization of Plane Truss Structures (평면(平面) 트러스 구조물(構造物)의 형상최적화(形狀最適化)에 관한 구연(究研))

  • Lee, Gyu won;Byun, Keun Joo;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.49-59
    • /
    • 1985
  • Formulation of the geometric optimization for truss structures based on the elasticity theory turn out to be the nonlinear programming problem which has to deal with the Cross sectional area of the member and the coordinates of its nodes simultaneously. A few techniques have been proposed and adopted for the analysis of this nonlinear programming problem for the time being. These techniques, however, bear some limitations on truss shapes loading conditions and design criteria for the practical application to real structures. A generalized algorithm for the geometric optimization of the truss structures which can eliminate the above mentioned limitations, is developed in this study. The algorithm developed utilizes the two-phases technique. In the first phase, the cross sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton-Raphson method. In the second phase, the geometric shape is optimized utilizing the unidirctional search technique of the Rosenbrock method which make it possible to minimize only the objective function. The algorithm developed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examme its applicability and stability. The numerical comparisons show that the two-phases algorithm developed in this study is safely applicable to any design criteria, and the convergency rate is very fast and stable compared with other iteration methods for the geometric optimization of truss structures.

  • PDF

Introduction of the Best Practices in the Pakistan Gulpur HEPP (파키스탄 Gulpur 수력발전 현장의 Best Practices 소개)

  • JANG, Ock Jae;HONG, Won Pyo;CHAE, Hee Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.216-217
    • /
    • 2022
  • Gulpur 수력발전 프로젝트는 전력난을 겪고 있는 파키스탄에 102 MW 규모의 수력발전소를 건설하여 30년 동안 운영 관리한 후 파키스탄 정부로 양도하는 IPP(Independent Power Producing) 형식의 투자사업이다. 남동발전과 DL E&C, 롯데건설이 Sponsor로서 출자한 자본금과, ADB, IFC, K-EXIM 등의 대주단로부터의 차입금을 재원으로 하여 소요 사업비를 조달하고 사업을 개발하였다. DL E&C와 롯데건설이 EPC(Engineering, Procurement, Construction)를 수행하였고, 이산이 Design consultant의 역할을 수행하였다. Gulpur 수력발전 프로젝트의 발전형식은 수로식(run-of-river)으로 201 m3/s의 발전유량과 102 MW의 발전 시설용량을 이용하여 연평균예상발전량은 398 GWh이다. 주요 구조물로는 설계 재현빈도 1년의 유수전환시설(가물막이댐 & 가배수터널)과 콘크리트 중력식댐(H 67 m, L 205 m), 도수터널(D 6.7 m, L 215 m, 2기), 옥외형 발전소 (H 51 m, W 60 m, L 38 m, Kaplan 2기)가 있으며, 2015년 10월 착공하여 2020년 3월 상업발전을 시작하였다. 본 프로젝트는 DL E&C의 첫 번째 EPC 해외수력발전 프로젝트이다. 따라서 프로젝트의 성공적 수행을 위한 경제적 설계, 시공의 효율성 및 안정성 확보 등을 위하여 많은 연구를 수행하는 과정에서 다양한 기술 개선을 이룰 수 있었다. 본고에서는 Gulpur 프로젝트를 통하여 도출된 성공 사례들을 소개 및 공유하고자 한다. 첫 번째로 콘크리트 중력식댐 시공을 위한 유수전환시설의 최적 설계빈도를 산정하였다. 일반적으로 유수전환시설의 규모는 설계기준에 제시된 설계 재현빈도를 이용하는데, 해외 설계기준에서는 10년, 국내 설계기준에서는 1~2년으로 다르게 제시되어 있는 문제점이 있다. 유수전환시설의 규모는 프로젝트의 경제성에 큰 영향을 미치기 때문에 최적 설계빈도의 결정이 필요하며, 위험도분석기법(Risk Analysis)과 기대화폐가치법(Expected Monetary Value)을 이용하여 유수전환시설의 최적 설계 재현빈도와 이에 영향을 미치는 인자를 분석하였다. 위험도는 몬테카를로 시뮬레이션으로 산정된 가물막이댐 파괴확률과 재현빈도를 이용하여 산정된 가물막이댐 월류확률을 고려하였으며, 비용 및 피해액으로는 유수전환시설의 공사비, 가물막이댐 파괴시의 재건설비용과 지체보상금, 가물막이댐 월류시의 복구비용을 고려하였다. 이에 대한 연구결과로, 유수전환시설의 사용기간과 월류시의 복구비용이 유수전환시설의 설계 재현기간 결정에 가장 큰 영향을 미치는 것으로 나타났고, 특히 월류시의 복구비용이 작을수록 낮은 설계 재현빈도를 선택하는 것이 타당한 것으로 나타났다. 예를 들어, 유수전환시설의 사용기간이 3 ~ 5년, 복구비용이 0.5 ~ 1.0 mil USD 이하인 조건에서 가물막이시설의 최적 설계빈도는 1년 ~ 2년인 것으로 나타났다. 또한, 유수전환시설의 사용기간은 본댐의 규모와 시공기간 등을 고려하여 결정되는 사항으로 설계자가 임의 조정할 수 없지만, 복구비용은 시공 관리자에 따라 결정되는 부분으로, 적극적 홍수 피해 저감 및 복구방안을 마련하는 것이 프로젝트의 경제성을 향상시킬 수 있다는 것을 알 수 있었다. 두 번째로 프로젝트의 경제성 향상, 홍수기 댐 시공시의 안전성 확보를 위하여 홍수 조기경보시스템(Early Warning System)을 개발 및 활용하였다. 수로식(Run-of-river) 수력발전댐은 대부분 산악지역에 위치하기 때문에 국지성 강우 및 급한 지형 경사로 인하여 돌발홍수(flash flood)의 발생 가능성이 높다. 따라서 시공 중 홍수(월류) 발생을 미리 감지하고 현장에 전파할 수 있는, 수로식(Run-of-river) 수력발전댐 현장을 위한 홍수 조기경보시스템이 필요하며, 이를 리스크 인식, 모니터링 및 경보, 전파 및 연락, 반응 능력 향상의 4가지 부분으로 나누어 구축하였다. 리스크 인식 부분에서는 가물막이댐 월류 발생 상황에 대한 위험도, 취약성, 리스크를 제시하였으며, 모니터링 및 경보 부분에서는 상류 측정수위에서 유도된 현장 예상수위와 실제 현장 측정 수위를 대상으로 경보홍수위와 위험홍수위로 나누어 관리하였다. 전파 및 연락 부분에서는 현장 시공 조직을 활용하여 홍수시를 대비한 비상연락체계도(Emergency communication flow chart)를 운영하였으며, 반응 능력 향상을 위해 비상연락체계도의 팀별 Action plan을 상세화 하였다. 세 번째로 현장의 지질특성과 50여 차례 발파시험으로 현장 고유의 발파진동감쇄곡선을 도출하였으며, 이를 통해 현장의 시공성과 콘크리트 품질 확보를 동시에 달성할 수 있는 방안을 제시하였다. 콘크리트댐 공사에서는 제한된 공기 내에 공사를 완료하기 위해 사면부 굴착과 콘크리트 타설이 동시에 수행될 수밖에 없는 문제점을 가지고 있다. 그러나 신규 콘크리트 타설면 근처에서 발파를 수행하는 경우 발파로 발생되는 탄성파가 일정 수준을 초과하게 되면, 콘크리트 양생에 영향을 주게 된다. 따라서 다수의 현장 발파시험을 통해 발파거리와 최대진동속도의 상관관계 즉, 발파진동감쇄곡선을 도출함으로써 현장의 발파진동특성을 도출할 수 있었다. 또한, 기존 연구 논문들을 통해 콘크리트 재령기간 별 안전진동속도를 선정하고, 해당 안전진동속도를 초과하지 않는 범위에서 콘크리트 타설면과 발파위치의 거리에 따라 1회 발파 가능한 장약량을 산정하여 적용하였다. 이와 같은 체계적인 접근을 통해 콘크리트 타설과 발파 작업 동시 수행에 대한 논란을 해소할 수 있었다.

  • PDF