• Title/Summary/Keyword: 토모그래피 재구성

Search Result 18, Processing Time 0.018 seconds

Tomographic Reconstruction of Asymmetric Soot Structure from Multi-angular Scanning (다각 주사법을 이용한 비대칭 매연분포의 재구성)

  • Lee, S.M.;Hwang, J.Y.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.55-61
    • /
    • 1999
  • A convolution algorithm combined with Fourier transformation is applied to the tomographic reconstruction of the asymmetric soot structure to identify the local soot volume fraction distribution. The line of sight integrated data from light extinction measurement with multi-angular scanning form basic information for the deconvolution. Multi-peak following interpolation technique is applied to obtain the effect of increasing number of scanning angles. Measurement of LII signal for the same flame shows the validity of this reconstruction technigue.

  • PDF

DEVELOPMENT OF IONOSPHERIC TOMOGRAPHY MODEL USING GPS (GPS를 이용한 전리층 토모그래피 모델 개발)

  • Choi Byung-Kyu;Park Jong-Uk;Lee Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.237-244
    • /
    • 2006
  • We produced the electron density distribution in the ionosphere over South Korea using the data from nine permanent GPS (Global Positioning System) stations which have been operated by KASI (Korea Astronomy and Space Science Institute). The dual-frequency GPS receiver data was used to precisely estimate the electron density in the ionosphere and we obtained the precise electron density profile based on two-dimensional TEC (Total Electron Contents). We applied ART (Algebraic Reconstruction Technique), which is one of the most commonly used algorithms to develop the tomography model. This paper presented the electron density distribution over South Korea with time. We compared with the electron density profiles derived from the GPS tomography reconstruction, Ionosonde measurement data obtained by observations, and the IRI-2001 values. As a result, the electron density profile by GPS reconstruction was in excellent agreement with the electron density profile obtained by Ionosonde measurement data.

Model Simulation for Assessment of Image Acquisition Errors Affecting Electron Tomography (영상 자료 획득시의 오류가 전자토모그래피 결과에 미치는 영향 고찰-모델 시뮬레이션을 중심으로)

  • Jou, Hyeong-Tae ;Lee, Su-Jeong;Kim, Youn-Joong;Suk, Bong-Chool
    • Applied Microscopy
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2008
  • This simulation study examined the effect of data acquisition error including the data type of TEM image, and incident beam intensity of the tilt series on 3D tomograms. Simulation was performed with the 3D head phantom model of Kak and Slaney, and the slightly modified 3D head phantom model with enhanced difference in absorption coefficients. Reconstructed tomogram for the original head phantom model using 8-bit gray-scale image was distorted with extremely high level of noise, while an acceptable result was obtained for the modified model. The results for the original model using wrong formulation for the transmitted beam intensity was proved to be incorrect. The high level of noise along the z direction was found in case of the modified model. On the other hand, the wrong value of incident beam intensity in both models gave distorted results. In order to reconstruct an artifacts-free 3D structure from the projections with invisible features in electron tomography, the 16-bit projection images should be used with the correct incident beam intensity which is applied to Beer's law.

Acoustic 2-D Full-waveform Inversion with Initial Guess Estimated by Traveltime Tomography (주시 토모그래피와 음향 2차원 전파형 역산의 적용성에 관한 연구)

  • Han Hyun Chul;Cho Chang Soo;Suh Jung Hee;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Seismic tomography has been widely used as high resolution subsurface imaging techniques in engineering applications. Although most of the techniques have been using travel time inversion, waveform method is being driven forward owing to the progress of computational environments. Although full-waveform inversion method has been known as the best method in terms of model resolving power without high-frequency restriction and weak scattering approximation, it has practical disadvantage that it is apt to get stuck in local minimum if the initial guess is far from the actual model and it consumes so much time to calculate. In this study, 2-D full-waveform inversion algorithm in acoustic medium is developed, which uses result of traveltime tomography as initial model. From the application on synthetic data, it is proved that this approach can efficiently reduce the problem of conventional approaches: our algorithm shows much faster convergence rate and improvement of model resolution. Result of application on physical modeling data also shows much improvement. It is expected that this algorithm can be applicable to real data.

  • PDF

A study on distribution of drop size and injection rate of air-shroud injector sprays under steady and transient injection condition (정상.과도 분사 조건에서의 에어슈라우드 인젝터 분무의 입경.분사량 분포에 관한 연구)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • Spray characteristics of a twin-hole air shrouded nonle designed for gasoline injectors was investigated by using laser diffraction particle analyzer (LDPA) and tomography reconstruction- A confined spray chamber which is optically accessible through a pair of glass windows was made to simulate the fuel injection condition in intake manifold of gasoline engine. The measurement was applied to the twin hole injector with and without an air shroud. It demonstrates that for the case with an air shroud, fine atomization is achieved and there exists a large number of fine droplets between the region of the main spray streams, which conforms with the spray visualization. The drop size distribution was investigated as a function of elapse time after fuel injection. The distribution was greatly affected by the measurement position from the injector exit. Also, the spatially resolved spray volume fraction and Sauter Mean Diameter (SMD) from line-of-sight data of the LDPA are tomographically reconstructed by Convolution Fourier transformation under the steady injection condition.

  • PDF

2D Temperature Measurement of CT-TDLAS by Using Two-Ratios-of-Three-Peaks Algorithm (컴퓨터토모그래피 레이저흡수분광법(CT-TDLAS) 기반 2차원 온도분포 산정 Two-Ratios-of-Three-Peaks (2R3P) 알고리듬 개발)

  • CHOI, DOOWON;CHO, GYONGRAE;SHIM, JOONHWAN;DEGUCHI, YOSHIHIRO;KIM, DONGHYUK;DOH, DEOGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.318-327
    • /
    • 2016
  • In order to improve the performance of temperature field measurements by CT-TDLAS (Computer Tomography Tunable Diode Laser Absorption Spectroscopy), a new reconstruction algorithm, named two-ratios-of-three-peaks method is proposed in this paper. Further, two methods for selecting appropriate initial values of the iterative calculation of CT-TDLAS are proposed. One is MLOS (multiplicative line of sight) method and the other one is ALOS (additive line of sight) method. Two-ratios-of-three-peaks (2R3P) algorithm combined with MART (multiplicative algebraic reconstruction technique) is finally developed for the enhancements of reconstructive calculations. The results have been compared with those obtained by the conventional one-ratio-of-two-peaks (1R2P) algorithm. In order to evaluate the performance of this algorithm, numerical test has been performed using phantom Gaussian temperature distributions with $11{\times}11$ square mesh. The performance of the constructed algorithm has been demonstrated by comparing the results obtained in actual burner experiments with those obtained by thermocouples. It has been verified that 2R3P algorithm with MART and MLOS showed best performance than that of 1R2P algorithm.

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF

Improved full-waveform inversion of normalised seismic wavefield data (정규화된 탄성파 파동장 자료의 향상된 전파형 역산)

  • Kim, Hee-Joon;Matsuoka, Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.86-92
    • /
    • 2006
  • The full-waveform inversion algorithm using normalised seismic wavefields can avoid potential inversion errors due to source estimation required in conventional full-waveform inversion methods. In this paper, we have modified the inversion scheme to install a weighted smoothness constraint for better resolution, and to implement a staged approach using normalised wavefields in order of increasing frequency instead of inverting all frequency components simultaneously. The newly developed scheme is verified by using a simple two-dimensional fault model. One of the most significant improvements is based on introducing weights in model parameters, which can be derived from integrated sensitivities. The model-parameter weighting matrix is effective in selectively relaxing the smoothness constraint and in reducing artefacts in the reconstructed image. Simultaneous multiple-frequency inversion can almost be replicated by multiple single-frequency inversions. In particular, consecutively ordered single-frequency inversion, in which lower frequencies are used first, is useful for computation efficiency.