• Title/Summary/Keyword: 토마토생장

Search Result 178, Processing Time 0.021 seconds

Growth Promotion of Tomato by Application of Immobilized Arthrobacter woluwensis ED in Alginate Beads (Alginate에 고정화된 Arthrobacter woluwensis ED 처리 시 토마토의 생장촉진과 균주의 토양 내 잔류)

  • Kwon, Seung-Tak;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • In order to increase the persistence of plant growth promoting rhizobacteria (PGPR) in rhizpsphere soil, the growth of tomato was examined after the application of Arthrobacter woluwensis ED immobilized in alginate bead, which was known as PGPR. When tomato seedlings were treated with A. woluwensis ED of $1{\times}10^6$ cells g $soil^{-1}$ and incubated for 30 days in a plant growth chamber, the shoot length, root length, fresh weight and dry weight of the grown tomato plants treated with the suspended inoculants significantly increased by 36.2, 59, 51.1, and 37.5%, respectively compared to those of the uninoculated control. The treatment of the immobilized bacteria increased those by 42, 67.4, 62.5, and 60.4%, respectively compared to those of the uninoculated control. Therefore, the enhancement of tomato growth by the treatment of the immobilized bacteria was higher than those by the suspended inoculants. The effects of the inoculation on indigenous bacterial community and the fate of the inoculated bacteria were monitored by denaturing gradient gel electrophoresis analysis. The DNA band intensity of A. woluwensis ED in the tomato rhizosphere treated with the suspended inoculants continuously decreased after the inoculation, but the band intensity in the tomato rhizosphere soils treated with the immobilized inoculants showed the maximum at 1 week after inoculation and the decreasing rate was less than that of the suspended inoculants, which indicated the longer maintenance of the immobilized bacteria at rhizosphere soils. Therefore, encapsulation of PGPR in alginate beads may be more effective than liquid inoculant for the plant growth promotion and survival of PGPR at plant rhizosphere.

Effects of Root-knot Nematode, Meliodogyne hapla, on Growth and Yield of Pepper and Tomato (당근혹선충이 고추와 토마토의 생육 및 수량에 미치는 영향)

  • Cho H.J.;Han S.C.
    • Korean journal of applied entomology
    • /
    • v.22 no.1 s.54
    • /
    • pp.15-20
    • /
    • 1983
  • Effects of the root-knot nematode, Meloidogyne hapla, on the growth and yields of hot-pepper (var.: Cheongyong gochu) and tomato$(var.:\;Bogsu\;\#)$ were studied with inoculating 500, 2,500, 5,000, 7,500, 10,000 and 20,000 nematodes per plant in pots. Results were analyzed with comparing weight of fruits harvested throughout the season from both hot-pepper and tomato, and with mineral contents in dried stoots and roots of pepper plant 20 weeks after the inoculation. No significant difference was found on the plant growth at all levels of inoculation until the 8th week after the inoculation. However, the plant growth was significantly depressed from the 12th week in the pots inoculated with over 10,000 nematodes, and the yields were reduced by $16\%$ in hot-pepper and $14\%$ in tomato respectively when 10,000 nematodes were inoculated.

  • PDF

Indoor Cultivation of Dwarf Tomatoes using Light Emitting Diode for Urban Farming (도시농업을 위한 LED를 이용한 왜성 토마토의 실내 재배)

  • Seung Mi Woo;Ho Cheol Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.6
    • /
    • pp.849-853
    • /
    • 2024
  • This study was conducted from May 11 to June 20, 2024 to compare the growth of dwarf tomato according to light sources (White LED, Red + Blue LED) to select a light source suitable for urban agriculture. White LED (WH) and Red + Blue LED (RB) have differences in wavelength and total light intensity. Not only growth factors but also the number of fruits set and sugar content were significantly higher in WH than in RB. These results are thought to have been affected by the intensities of blue and red wavelengths, but they were determined to be influenced by the sum of all wavelength intensities (= total light intensity). Therefore, it is thought to be better to use WH with various wavelengths and high total light intensity for cultivation of tomato at home.

Occurrence Monitoring and Population Growth of Tomato Russet Mite, Aculops lycopersici Massee (Acari: Eriophyidae) Using Green Label Sticker (시설토마토에서 녹색 라벨 스티커를 이용한 토마토녹응애의 발생예찰과 개체군 생장)

  • Choi, Yong Seok;Nam, Yun Gyu;Whang, In Su;Park, Hong Hyun;Kim, Hyeong Hwan;Park, Deok Gee
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.405-410
    • /
    • 2012
  • This study is conducted to develop a new method of early occurrence monitoring for Aculops lycopersici Massee (Acari: Eriophyidae), a major pest in tomato. A. lycopersici causes damage to plants such as curling of leaflet edges, followed by leaflet bronzing. As feeding continues by the mites, the plant takes on a russeted, wilted appearance, eventually culminating in leaflet desiccation and finally plant death. Fruit damages in tomato were shown when the density of mites was very high. Also, A. lycopersici caused more damage to unripe fruits than ripe fruits. The time taken to detect A. lycopersici on green label sticker was 7.0 seconds, the shortest. Blue, orange and white label stickers took 17.1, 19.8 and 12.3 seconds respectively. The permeable microscope with side illumination was useful in observing A. lycopersici on label stickers. A. lycopersici began to occur in late-April and the density of the mites increased rapidly after mid-May. The density peaked in mid to late-June, and decreased after late-June. A. lycopersici was observed on lower stems 20 days after the release of mites and observed on higher stems 60 days after. The peaked densities were observed on stems 40 and 60 days after and on leaf 80 days after. The label sticker is enough to monitor early occurrence of A. lycopersici in tomato cultivation facilities.

Induction of Disease Resistance by Acibenzolar-S-methyl, the Plant Activator against Gray Mold (Botrytis cinerea) in Tomato Seedlings (저항성 유도물질(acibenzolar-S-methyl)처리에 의한 토마토 잿빛곰팡이병 발병억제)

  • Lee Jung-Sup;Kang Nam-Jun;Seo Sang-Tae;Han Kyoung-Suk;Park Jong-Han;Jang Han-Ik
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • The plant defence activator, Acibenzolar-S-methyl [benzo (1,2,3) thiadiazole-7-carbothioic acid-S-methyl ester, ASM] was assayed on tomato seedlings for its ability to induce resistance against Botrytis cinerea, the causal agent of gray mold in tomato. Pre-treatment of plants with ASM reduced the severity of the disease as well as the growth of the mycelium in plants. In ASM treated plants, reduction in disease severity (up to 55%) was correlated with suppression of mycelia growth (up to 46.5%) during the time course of infection. In plants treated with ASM, activities of peroxidase were determined as markers of resistance. Applications of ASM induced Progressive and significant increase of the enzyme in locally treated tissues. Such responses were expressed earlier and with a much higher magnitude when ASM-treated seedlings were challenged with the pathogen, thus providing support to the concept that a signal produced by the pathogen is essential for triggering enhanced synthesis and accumulation of the enzymes. No such activities were observed in water-treated control plants. Therefore, the slower symptom development and reduction in mycelium growth in ASM treated plants might be due to the increase in activity of oxidative and antioxidative protection systems in plants.

Selection of Bacteria for Enhancement of Tolerance to Salinity and Temperature Stresses in Tomato Plants (토마토 염류와 온도 스트레스에 대한 내성을 유도하는 미생물 선발)

  • Yoo, Sung-Je;Shin, Da Jeong;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.3
    • /
    • pp.463-475
    • /
    • 2018
  • Salinity and extreme temperature stresses affect growth and productivity of crops negatively. Beneficial bacteria, including plant growth-promoting rhizobacteria (PGPR) induce growth promotion and tolerance of plants under abiotic stress conditions. In the present study, 20 strains were selected from 1944 isolated bacteria based on three plant growth-promoting (PGP) traits-aminocyclopropane-1-carboxylate deaminase activity, phosphate solubilization, indole-3-acetic acid production, and growth ability under salinity and extreme temperature stress conditions. Seven among the 20 strains were selected based on growth-promoting effects on plants under saline or temperature stresses in tomato plants. It was expected that the seven strains could induce tolerance of tomato plants under salinity or extreme temperature stresses, which implies that these seven strains can act as potential inducers of multiple stresses tolerance in tomato plants.

Tolerance of Crops to Simulated Acid Rain at Vegetative Growth Stage (인공산성비에 대한 작물에 영양생장기 내성 및 피해양상)

  • 김태주;이석순;김복진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.6
    • /
    • pp.556-563
    • /
    • 1994
  • To compare the tolerance of crops to acid rain of simulated acid rains(SAR) of three pH levels (3.0, 4.5, and 6.0) were applied to rice, corn, soybean, adzuki bean, hot pepper, tomato, sesame, barley, wheat, Chinese cabbage, radish, lettuce, and spinach for 30 days from 20 days after emergence at two-day interval with 10mm at a time. No visual damages were observed. Also, no alteration of ultrastructure was observed although some lightly stained lipid granules were observed in the chloroplasts of sesame, soybean, and adzuki bean at the SAR treatment of pH 3.0. As pH of SAR decreased, chlorophyll content increased in adzuki bean, decreased in rice, tomato, and spinach, and similar in the other crops. Photosynthetic activity of adzuki bean increased, while decreased in Chinese cabbage and barley as pH of SAR decreased, and similar in other crops. Concentration and uptake of N were not affected by SAR treatments in all crops except tomato and barley. When a strong SAR of pH 2.0 was applied, rice, corn, sesame, tomato, barley, and wheat were relatively tolerant, while adzuki bean, hot pepper, soybean, Chinese cabbage, lettuce, radish, and spinach were susceptible in terms of visual damages.

  • PDF

Influences of DIF on Growth and Development of Plug Seedlings of Lycopersicon esculentum before and after Transplanting (주야간 온도차(DIF)에 따른 토마토 플러그묘의 생장과 정직후 생육)

  • 임기병;손기철;정재동
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 1997
  • Effects of DIF on stem elongation in plug seedlings of mini tomato ‘Mini Carol’ and on the growth and flowering after transplanting were investigated. Stem elongation of seedlings was mainly influenced by day temperature rather than night temperature. When the effect of +DIF was compared to that of -DIF under the same average daily temperature(ADT), day temperature had greater impact on internode elongation than night temperature. On the other hand, leaf unfolding rate increased and compactness decreased as ADT in creased. Differences in internode length affected by DIF during seedlings stage DIF progressively diminished during growth period after transplanting. Node position at which first flower was initiated was lowered as ADT decreased. It was concluded that DIF treatment was an applicable tool for control of stem elongation, particularly to reduce stem length without a noticeably adverse effect on the growth and development of plant after transplanting.

  • PDF

Development of a Nutriculture System for Fruit Vegetables Using Perlite and Its Mixtures with Other Substrates II. Effects of Substrates on the Growth and Fruit Quality of Hydroponically Grown Tomato (Perlite 단용 및 혼용처리를 이용한 과채류 양액재배 기술 개발 II. 배지의 종류가 양액재배 토마토의 생장과 과실품질에 미치는 영향)

  • 정순주;서범석;이범선;이정현
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.7-14
    • /
    • 1996
  • This experiment was carried out to investigate the growth and yield responses of hydroponically grown tomato as affected by the different substrates using perlite and mixtures with perlite. Substrates used in this experiment were perlite (fine and coarse granule), peatmoss, rice hull and carbonized rice hull. The results obtained were as follows ; The best results in terms of total fruit yield and average fruit weight obtained in the single treatment of perlite, followed by perlite mixture with rice hull and carbonized rice hull. Leaf area was also higher in the plots of perlite mixture and optimum mixing ratio of perlite, peatmoss and carbonized rice hull was determined as 5:3:2 by volume. The more the rice hull was added to the mixed substrates, the less in fruit production was observed. However, adding perlite to other substrates brought higher fruit yield. Single treatment of rice hull showed the lowest fruit yield but enhanced in soluble solids contents over 6.0 $^{\circ}$Brix at each cluster.

  • PDF

Growth pf Plug Seedlings of Capsicum annuum and Lycopersicum esculentum as Affected by the Mixing Ratio of Aquafarm Waste Water Sludge in the Growing Medium (담수양어장 슬러지의 배지내 혼합비율이 고추(Capsicum annuum)와 토마토(Lycopersicum esculentum) 공정묘의 생장에 미치는 영향)

  • Lee, Eun-Ju;Hwang, Seung-Jae;Kim, Ik-Joon;Park, Young-Hoon;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.184-189
    • /
    • 2003
  • This research was conducted to determine the effect of mixing ratio of aquafarm waste water sludge (AWWS) in the growing medium as a source of fertilizers on growth of plug seedlings of pepper (Capsicum annuum L.) and tomato (Lycopersicum esculentum Mill.). Increased mixing ratio of AWWS resulted in increased fresh and dry weights, leaf area, plant height, and total chlorophyll content, although there were slight differences in growth characteristics at 20 and 40 days after sowing. Concentration of AWWS affected insignificantly the percent dry matter, number of leaves, and length of the longest root. The addition of AWWS increased pH and decreased EC in the medium as compared to that of chemical fertilizer. Compared to the control of a liquid fertilizer, 4 or 8 kg AWWS${\cdot}45L^{-1}$ medium (Sludge 4) gave a similar or slightly better growth. Above results suggested that addition of about 4 kg AWWS${\cdot}45L^{-1}$medium is sufficient for seedling growth and the AWWS can be used as a substitute for the liquid fertilizer in plug seedling production.