• Title/Summary/Keyword: 토너먼트 구조

Search Result 5, Processing Time 0.019 seconds

통계모형의 전문스포츠 현장 적용 사례

  • Eom, Han-Ju;Jo, Jeong-Hwan;Sin, Seung-Yun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.51-59
    • /
    • 2002
  • 스포츠 통계와 관련된 주제들은 경기결과의 설명 예측력 분석, 선수와 팀 평가, 경기내용의 요약, 경기의 환경적 요인 평가, 경기 규칙 분석, 경기결과의 시각적 표현, 토너먼트 구조 연구 등의 영역으로 다양하다. 이 글에서는 야구 축구 농구 테니스 종목을 중심으로 통계적 방법을 적용하여 스포츠 현장의 문제를 어떻게 접근하고 있는지를 개괄하였다. 전통적으로 스포츠 통계는 선수와 팀 그리고 전략의 평가가 주를 이루었지만, 오늘날 스포츠통계는 경기의 잠재적, 외적 요인 등의 주제로 관심영역을 넓혀가고 있다. 그러나 국내에서는 경기내용의 기술적(descriptive) 분석이 주류를 이루고 있으며, 전문적 수준의 통계적 접근은 활발하지 못하고 있다. 현장과 자료의 특성을 고려하여 통계와 스포츠(체육)분야의 다양한 협동연구가 필요하다.

  • PDF

Texture Cache with Automatical Index Splitting Based on Texture Size (텍스처의 크기에 따라 인덱스를 자동 분할하는 텍스처 캐시)

  • Kim, Jin-Woo;Park, Young-Jin;Kim, Young-Sik;Han, Tack-Don
    • Journal of Korea Game Society
    • /
    • v.8 no.2
    • /
    • pp.57-68
    • /
    • 2008
  • Texture Mapping is a technique for adding realism to an image in 3D graphics Chip. Bilinear filtering mode of this technique needs accesses of 4 texels to process one pixel. In this paper we analyzed the access pattern of texture, and proposed the high performance texture cache which can access 4 texels simultaneously. We evaluated using simulation results of 3D game(Quake 3, Unreal Tournament 2004). Simulation results show that proposed texture cache has high performance on the case where physical size is less then or equal 8KBytes.

  • PDF

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.

Fuzzy Optimum Design of Plane Steel Frames Using Refined Plastic Hinge Analysis and a Genetic Algorithm (개선소성힌지해석과 유전자 알고리듬을 이용한 평면 강골조 구조물의 퍼지최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Shon, Su Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.147-160
    • /
    • 2006
  • GA-based fuzzy optimum design algorithm incorporated with the refined plastic hinge analysis method is presented in this study. In the refined plastic hinge analysis method, geometric nonlinearity is considered by using the stability functions of the beam-column members. Material nonlinearity is also considered by using the gradual stiffness degradation model, which considers the effects of residual stresses, moment redistribution through the occurence of plastic hinges, and the geometric imperfections of the members. In the genetic algorithm, the tournament selection method and the total weight of the steel frames. The requirements of load-carrying capacity, serviceability, ductility, and constructabil ity are used as the constraint conditions. In fuzzy optimization, for crisp objective function and fuzzy constraint s, the tolerance that is accepted is 5% of the constraints. Furthermore, a level-cut method is presented from 0 to 1 at a 0 .2 interval, with the use of the nonmembership function, to solve fuzzy-optimization problems. The values of conventional GA optimization and fuzzy GA optimization are compared in several examples of steel structures.

Stacking Sequence Design of Fiber-Metal Laminate Composites for Maximum Strength (강도를 고려한 섬유-금속 적층 복합재료의 최적설계)

  • 남현욱;박지훈;황운봉;김광수;한경섭
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.42-54
    • /
    • 1999
  • FMLC(Fiber-Metal Laminate Composites) is a new structural material combining thin metal laminate with adhesive fiber prepreg, it nearly include all the advantage of metallic materials, for example: good plasticity, impact resistance, processibility, light weight and excellent fatigue properties. This research studied the optimum design of the FMLC subject to various loading conditions using genetic algorithm. The finite element method based on the shear deformation theory was used for the analysis of FMLC. Tasi-Hill failure criterion and Miser yield criterion were taken as fitness functions of the fiber prepreg and the metal laminate, respectively. The design variables were fiber orientation angles. In genetic algorithm, the tournament selection and the uniform crossover method were used. The elitist model was also used to be effective evolution strategy and the creeping random search method was adopted in order to approach a solution with high accuracy. Optimization results were given for various loading conditions and compared with CFRP(Carbon Fiber Reinforced Plastic). The results show that the FMLC is more excellent than the CFRP in point and uniform loading conditions and it is more stable to unexpected loading because the deviation of failure index is smaller than that of CFRP.

  • PDF