• 제목/요약/키워드: 템퍼링처리

검색결과 29건 처리시간 0.021초

오스템퍼링 처리한 구상흑연주철의 AE신호에 의한 절삭공구 손상의 검출에 관한 연구 (Detection of the Cutting Tool's Damage by AE Signals for Austempered Ductile Iron)

  • Jun, T.O.;Park, H.S.;Ye, G.H.
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.25-31
    • /
    • 1996
  • In this paper, three different types of commercial tools -P20, NC123K and ceramic- have been used to cut austempered ductile iron(ADI). In the austempered condition the materials are hard, strong and difficult to machine. Thus, we selected a optimum tool material among three different types of used tools in machining of austempered ductile iron. It was used acoustic emission (AE) to know cutting characteristic for selected tool and investigate characteristic of AE signal according to cutting condition and relationship between AE signal and flank wear land of the ceramic tool. The obtained results are as follows ; (1) The ceramic tool among three different types of tools is the best in machining austempered ductile iron. (2) In case of ceramic tool, the amplitude level of AE signal(AErms) is mainly affected by cutting condition and it is proportional to cutting speed. (3)There have been the relationship of direct proportion between the amplitude level of AE signal and flank wear land of the tool. (4) It was observed that the value of AErms was only affected by cutting speed. Therefore it is possible to in-process detec- tion of ceraic tool's wear in case the initial value of AErms at each cutting speed decided.

  • PDF

오스템퍼링 처리한 구상흑연주철(ADI)의 내마모성에 미치는 합금원소의 영향에 관한 연구 (Effect of Alloying Elements on the Wear Resistance of Austempered Ductile Iron)

  • 이상학;김홍범;김종철;천병욱;김창규;최창옥
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.24-32
    • /
    • 1999
  • A series of investigations for Austempered Ductile Iron (ADI) castings were carried out by using the specimens with various chemical compositions and heat treatment conditions. The rolling wear characteristics of alloyed austempered ductile irons under an unlubricated dry rolling condition was evaluated by the Amsler type test with 9.09% sliding ratio. Generally, the wear amount was increased with the austempering temperature and decreased when the hardness of the matrix was higher. The alloying elements also influenced the austempering reaction, the microstructure and the mechanical properties. In this study, the mechanical properties (i.e.) ultimate tensile strength (UTS), hardness, elongation) and the wear resistance are analysed to show the relationship between the alloying elements and the austempering temperatures. Mo, Cu and Ni are alloyed individually or in combination. It has been found that when Cu and Ni alloyed individually to a casting, the wear amount is increased than others with elements alloyed in combination. The amount of rolling wear loss was decreased when Mo was alloyed in cast iron, individually or in combination.

  • PDF

3.60wt%C-2.50wt%Si 구상흑연주철의 경화 및 오스템퍼링 처리시 기계적 성질에 미치는 합금 원소의 영향 (Effects of Alloying Elements on the Mechniacal Properties of Hardened and Austempered 3.60%C-2.50wt%Si Ductile Cast Irons)

  • 박정재;서갑성;권해욱
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.273-281
    • /
    • 2008
  • Effects of alloying elements on the mechanical properties of hardened and austempered 3.60wt%C - 2.50wt%C ductile cast iron were investigated. Strength and hardness were increased and ductility was decreased as the amount of alloying element increased. The increasing effect of copper addition on the strength was the most pronounced. The strength and hardness were greatly increased and ductility was decreased by hardening. The effect of alloying element on the mechanical properties of the hardened ductile cast iron was not so pronounced due to the high contents of C and Si. The strength and hardness of austempered ductile cast iron were greatly increased, meanwhile the difference of strength from that of hardened one was not so big. The ductility of the former was higher than that of the latter. The strength and ductility of austempered ductile cast iron with 0.25%Mn were the maximum of all Mn added ones. The maximum strength of that was obtained with the addition of 0.80wt%Cu or 2.00wt%Ni along with this amount of Mn added.

고주파표면 경화 처리된 0.45% 탄소강의 템퍼링 거동 (Tempering Behavior of 0.45% Carbon Steel Treated by a High Frequency Induction Hardening Technique)

  • 심재진;이상윤
    • 열처리공학회지
    • /
    • 제3권2호
    • /
    • pp.10-19
    • /
    • 1990
  • The tempering behavoirs of 0.45% carbon steel treated by automatic progressive high frequency induction hardening equipment have been investigated. In order to examine the correlation of hardness with both tempering temperature and time, simple regression analysis has been made using the statistical quality control package. The maximum surface hardness value of induction hardened zone and its effective hardening depth have been determined to be Hv 810 and 0.76mm, respectively. The hardness obtained after tempering has been shown to vary lineary with tempering time at six different temperatures. The activation energies during tempering have been calculated to be 25.34kcal/mole, 32.73kcal/mole and 49.24kcal/mole for HRcs 60, 50 and 40, respectively, showing that tempering process occurs by a complex mechanism, The tempering hardness equation of $H=90.113{\sim}4.531{\times}10^{-3}$ [T(11.996+log t)] has proved to be in a reasonably good agreement with experimently determined data and it is also expected to be useful for the determination of tempering treatment conditions to obtain a required hardness value.

  • PDF

SAE 1078 강의 오스템퍼링 열처리시 가스 퀜칭 속도에 따른 미세조직의 변화 (Change in Microstructure with the Gas Quenching Rate during Austempering Treatment of SAE 1078 Steel)

  • 권기훈;박현준;여국현;이영국;김상권
    • 열처리공학회지
    • /
    • 제36권3호
    • /
    • pp.121-127
    • /
    • 2023
  • When high carbon steel is heated in an appropriate austenizing temperature range and subjected to austempering, the size and shape of lamellar structure can be controlled. The high carbon steel sheet having the pearlite structure has excellent elastic characteristics because it has strong restoring force when properly rolled, and is applied in a process known as patenting-process using lead bath. In the case of isothermal treatment using lead-medium, it is possible to quickly reach a uniform temperature due to high heat transfer characteristics, but it is difficult to replace it with process technology that requires treatment to remove harmfulness lead. In this study, we intend to develop fluidization technology using garnet powder to replace the lead medium. After heating the high-carbon steel, the cooling rate was changed by compressed air to the vicinity of the nose of the continuous cooling curve, and then maintained for 90 s and then exposed to room temperature. The microstructure of the treated specimens were analyzed and compared with the existing products treated with lead bath. The higher the flow rate of compressed air, the faster the cooling rate to the pearlite transformation temperature, so lamellar spacing decreases and the hardness tends to increase.

고합급백주철에 있어서 열처리가 기지조직의 변태에 미치는 영향 (Effects of Heat-Treatments on Transformation Behavior of Matrix Structures in High Alloyed White Cast Iron)

  • 신상우;류성곤
    • 한국재료학회지
    • /
    • 제10권6호
    • /
    • pp.409-414
    • /
    • 2000
  • 3%C-10%Cr-5%Mo-5%W, 3%C-10%V-5%Mo-5%W 및 3%C-17%Cr-3%V의 3종류 고합금백주철에 있어서 열처리후의 기지조직의 변태거동을 연구하였다. 15kg 용량의 고주파 유도용해로에 선철, 고철, Fe-Cr, Fe-V, Fe-Mo 및 Fe-W 등을 장입시켜 용해시킨 후 슬래그를 제거시키고 $1550^{\circ}C$에서 Y-block의 펩 주형에 주입시켰다. 적당한 크기로 절단한 시편을 진공분위기하에$950^{\circ}C$에서 5시간동안 우선 균질화처리를 실시하였다. 그 후 다시 이 시편을 $1050^{\circ}C$에서 2시간동안 오스테나이징시킨 후 강제공냉을 행하였다. 강제공냉된 시편을 $300^{\circ}C$에서 3시간 유지시킨 후 템퍼링을 실시하였다. 주방상태에서의 기지조직은 3합금 공히 퍼얼라이트이었으며 강제공냉후에는 마르텐사이트 및 오스테나이트로 변태하였다. 또한 기지조직내에 무수히 많은 이차탄화물 입자들의 석출되었다. 템프링 후 일부 오스테나이트 및 마르텐사이트는 템퍼드마르텐사이트로 변태하였다. 변태하였다.

  • PDF

STD11 고속도 공구강의 고온 가스질화 처리 및 템퍼링에 관한 연구 (A Study on the High Temperature Gas Nitriding and Tempering in STD11 steel)

  • 공정현;강창룡;성장현
    • 열처리공학회지
    • /
    • 제22권5호
    • /
    • pp.282-289
    • /
    • 2009
  • The effects of the high temperature gas nitriding (HTGN), tempering and subzero treatment of STD11 steel have been investigated. HTGN treatment was carried out at $1050^{\circ}C$, $1100^{\circ}C$ and $1150^{\circ}C$ for 1 hr. in an atmosphere of $1\;kg/cm^2$ nitrogen gas. Tempering and double-tempering were performed at $550^{\circ}C$ for 1 hr. The surface layer of HTGN-treated steel appeared the precipitates of $M_2N$, $M_7C_3$ and $M_{23}C_6$ in the matrix of austenite. However, the interior region exhibited martensite with the precipitation of carbides. The nitrogen content of the surface layer appeared ~1.35 wt.%, ~0.83 wt.% and ~0.56 wt.% at the HTGN treatment temperature of $1050^{\circ}C$, $1100^{\circ}C$ and $1150^{\circ}C$, respectively. The surface hardness of double-tempered and subzero-treated steel measured the maximum value of 828 Hv, 960 Hv, 750 HV after HTGN treatment at the $1050^{\circ}C$, $1100^{\circ}C$ and $1150^{\circ}C$, respectively. These hardness value increased above 230~420 Hv compared with the HTGN-treated steel due to the decrease in retained austenite and existence of fine precipitates.

오스템퍼링 처리한 C/V 흑연 주철의 마모에 미치는 잔류 오스테나이트량의 영향에 관한 연구 (Effect of Retained Austenite Content on the Wear Properties of Austempered C/V Graphite Iron)

  • 주도재;김홍범;천병욱;최창옥
    • 한국주조공학회지
    • /
    • 제18권4호
    • /
    • pp.340-348
    • /
    • 1998
  • C/V graphite iron has superior tensile strength, toughness and ductility than grey iron, and better castability than ductile iron. The retained austenite content of C/V graphite iron by austempering treatment affects on the mechanical properties such as ductility, hardness, wear properties and machinability. C/V graphite iron alloyed with Cu and Mo were carried out on the austenitizing at $900^{\circ}C$ for 1 hour, and the austempering at $240{\sim}400^{\circ}C$ for 1 hr. And then the mechanical and wear properties of austempered C/V graphite iron have been investigated by the retained austenite content. In consequence, the retained austenite content was found to be 18.2% in austempering temperature at $240^{\circ}C$, and was increased 39.2% at $400^{\circ}C$. Tensile strength and hardness of austempered C/V graphite iron were decreased as the retained austenite content increased, but elongation was increased. The rolling wear loss were increased as the retained austenite content increased. The wear surface of as-cast became to be rough. The microstructure of austempered C/V graphite iron was became to be acicular ausferrite in austempering at $240^{\circ}C$, and feathery ausferrite at $400^{\circ}C$.

  • PDF

API J55강의 미세조직과 기계적 특성에 미치는 열처리 및 합금원소(B, Ti)의 영향 (Microstructures and Mechanical Properties of API J55 steel with Heat treatment conditions and Alloying elements(B, Ti))

  • 최종민
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.69-76
    • /
    • 2018
  • 본 연구에서는 유정용 강관의 열처리 조건 및 합금원소(B, Ti)에 따른 미세조직 및 기계적 성질을 조사하였다. 실험에는 J55, J55+B,Ti 강재를 사용하였고, 열처리 조건은 각각 오스테나이트 처리온도 ($880^{\circ}C$, $910^{\circ}C$, $940^{\circ}C$), 냉각방식 (수냉, 유냉), 템퍼링 온도 (미실시, $550^{\circ}C$, $650^{\circ}C$) 이다. 열처리 조건에 따라 얻어지는 미세조직을 예측하기 위해 J55, J55+B,Ti 강재의 화학적 성분을 기준으로 평형상태도와 CCT 곡선을 예측하였다. 시뮬레이션 결과 평형상태도는 A1, A3 온도가 약 $20^{\circ}C$ 감소하였고, CCT 곡선은 B, Ti이 첨가됨에 따라 ferrite와 bainite nose 부분이 오른쪽으로 이동하였다. J55, J55+B,Ti 강재의 CCT 곡선을 기준으로 냉각속도에 따른 martensite, bainite, ferrite등 예상되는 미세조직을 예측하였고, J55 강재의 미세조직 예측값은 실제 실험값과 유사한 양상을 나타내었지만. J55+B,Ti 강재의 예측값은 실제 실험값과는 차이가 있었다. 열처리 조건이 변화됨에 따라 martensite, bainite, ferrite 등 다양한 조직이 생성되었으며, 이는 경도, 강도 및 연신율에 밀접한 영향을 미쳤다. J55시편의 수냉의 경우 martensite 조직이 형성되었고, 유냉의 경우 bainite와 ferrite 조직이 형성되었지만, J55+B,Ti시편은 B의 첨가에 의한 경화능 향상으로 냉각방식에 관계없이 martensite 조직이 형성되었다. 전반적으로 B, Ti을 첨가하면서 기계적 성질은 향상되었고, quenching 이후의 시편보다 tempering 이후의 시편에서 크게 향상되었다. 이는 Ti의 첨가로 인해 생성된 미세한 석출물이 재결정시 결정립 성장을 억제하여 미세한 오스테나이트 결정립을 생성하였고, tempering 열처리 이후에도 결정립 미세화 효과가 큰 영향을 미친 것으로 판단된다.