• Title/Summary/Keyword: 텔로미어

Search Result 35, Processing Time 0.031 seconds

Effect of Dietary Siberian Ginseng and Eucommia on Broiler Performance, Serum Biochemical Profiles and Telomere Length (가시오갈피와 두충의 첨가 급여가 브로일러의 생산 능력, 혈장 생화학 지표 및 텔로미어 함량에 미치는 영향)

  • Sohn, S.H.;Jang, I.S.;Moon, Y.S.;Kim, Y.J.;Lee, S.H.;Ko, Y.H.;Kang, S.Y.;Kang, H.K.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • The Siberian ginseng and Eucommia are a kind of medicinal plant with powerful anti-oxidant activity. An experiment was conducted to investigate the effect of Siberian ginseng leaf and Eucommia leaf at level of 0.5% and 1% per feed in Ross commercial broiler for 4 to 35 days of age on performance, organ weight, blood biochemical profiles and telomere quantity. Chickens consuming diets containing 1% Siberian ginseng had higher feed conversion ratio than the other treated chicken during experimental period whereas no significant differences were detected in body weight, weight gain and feed intake. The weight of bursa of fabricius was significantly increased in chickens with dietary supplementation compared with chickens fed control but this was not seen in liver, spleen and thymus. In blood biochemical profiles, chickens with dietary supplementation had higher concentration than chickens fed control in triglyceride, cholesterol and glucose. The concentration of aspartate aminotransferase, alanine aminotransferase, albumin and total protein, however, was not significantly different between dietary supplemented chickens and control chickens. The relative amount of telomeric DNA of lymphocytes in chickens with dietary supplementation was significantly higher than that of control chickens but the difference was not found in liver, heart and testis tissues. In conclusion, dietary supplementation of Siberian ginseng and Eucommia in broiler improved immune activity and telomere length without decreasing chicken growth performance.

Analysis of Stress Response of Domestic Chicken Breeds for the Development of a New Synthetic Parent Stock (국산 종계 개발을 위한 토종 계통들의 스트레스 반응 정도 분석)

  • Sohn, Sea Hwan;Cho, Eun Jung;Park, Ji Ae;Hong, Young Ho;Kim, Chong Dae
    • Korean Journal of Poultry Science
    • /
    • v.42 no.2
    • /
    • pp.157-167
    • /
    • 2015
  • We compared the degrees of stress response of 12 domestic purebred chicken strains that have been bred at National Institute of Animal Science, RDA, Korea since 1980. As a physiological marker of stress response, the expression levels of heat shock protein (HSP)-70, HSP-$90{\alpha}$, HSP-$90{\beta}$, hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) genes and telomere length were measured by quantitative real-time polymerase chain reaction using the lymphocytes of 1,101 chickens. There was significant difference in HSP-70, HSP-$90{\alpha}$, HMGCR expression and telomere length among the strains. There was also significant difference in HSP-$90{\alpha}$, HSP-$90{\beta}$, and HMGCR expression between male and female chickens. Different age groups of chicken exhibited different expression levels of HSP-70, HSP-$90{\alpha}$ and telomere length. The results of the HSPs expression level suggested that, the strains of R, L and Y were highly resistant to stress, whereas the strains of S, O and W were susceptible to stress. Although the statistical differences in some of HSPs gene expression existed between genders, the HSP expression results varied in different strains that some opposed to the others, and there might be interaction between strains and genders, which conclude that there was no difference in stress response between male and female chickens. Moreover, despite of significant difference in some of HSPs expression level, it was considered that there was no difference in stress response between ages due to the inconsistent trends among HSP markers.

Comparison of Stress Response between Korean Native Chickens and Single Comb White Leghorns subjected to a High Stocking Density (닭의 품종 간 스트레스 반응 정도 비교 분석)

  • Sohn, Sea Hwan;Cho, Eun Jung;Park, Dhan Bee;Jang, In Surk;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.41 no.2
    • /
    • pp.115-125
    • /
    • 2014
  • With Single Comb White Leghorn (WL) and Korean Native Chicken (KNC) breeds, we compared the stress response with chicken breeds that were subjected to a high stocking density. Stress response was analyzed by the quantity of telomeric DNA, the rate of DNA damage and the expression levels of heat shock proteins (HSPs) and hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) genes on tissues and blood. The telomere length and telomere shortening rates were analyzed by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes and tissues. The DNA damage rate of lymphocytes was quantified by the comet assay. The expression levels of HSP70, HSP90-${\alpha}$, HSP90-${\beta}$ and HMGCR genes were measured by quantitative real-time polymerase chain reaction in lymphocytes. There was no significant difference between KNC and WL in body weight, weight gain, telomere shortening rate and DNA damage rate. However, the growth rate significantly decreased in chickens raised under high stocking density conditions, as compared to the control group. The telomere-shortening rate, DNA damage and HSPs expression of the lymphocytes were significantly higher in the high stocking density group than the control. The stress condition and breeds had a significant effect on the expressions of HSP70, HSP90-${\alpha}$ and HSP90-${\beta}$ in lymphocytes, except HMGCR. The stress response of WL was higher than that of KNC, as analyzed to the expression of HSP70 and HSP90-${\alpha}$. Therefore, we concluded that the chickens which were exposed to a high stocking density had increased the individual physiological stress response regardless of breeds, and White Leghorns are more susceptible to stress condition than Korean Native Chickens.

Cattle Age Prediction by Leukocytes Telomere Quantification (혈액세포의 텔로미어 함량을 이용한 소의 연령예측)

  • Choi, Na-Eun;Kim, Hyun-Sub;Choe, Chang-Yong;Jeon, Gwang-Joo;Sohn, Sea-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.367-374
    • /
    • 2010
  • Telomeres at the end of chromosomes consist of tandem repeats of (TTAGGG)n DNA sequence and associated proteins. Telomeres have the essential functions in chromosome stability and genome integrity and are hence related to cell senescence and cancer. This study was carried out to quantify the amount of telomeric DNA and establish age prediction equations by using the quantity of telomeric DNA for cattle. Analysis of the telomere quantity of the lymphocytes was performed at different age, across breeds and between different sexes of cattle. We quantified the amount of telomeric DNA by the Q-FISH technique using the telomeric DNA probe in 460 cattle at age of 1~166 months in Korean Cattle and Holstein breeds. In results, we found that the amount of telomeric DNA decreased gradually with age. The amount of telomeric DNA of Korean Cattle was significantly higher than that of Holstein breed (P<0.01). In addition, the amount of telomeric DNA in male was significantly higher than that in female (P<0.01). Using the relationship between age and the amount of telomeric DNA in cattle, age predicting equations were established as a result of regression analysis. Because sex and breeds influenced telomeric DNA quantity, the age prediction equations were estimated separately in Korean Cattle females and Holstein females. The regression equations were $\hat{Y}$=$38.102X^2$-220.103X + 318.309 (P<0.0001, $R^2$=0.8019) in Korean Cattle females and $\hat{Y}$ = $42.799X^2$ - 199.682X + 242.106 (P<0.0001, $R^2$ = 0.8379) in Holstein females, where the X was quantity of telomeric DNA and Y was predicted age in months. These equations predicted the age of cattle with high significance and accuracy and have high R square values. Thus, it could be possible to scientifically predict the age using the above equations for Korean Cattle and Holstein females.

The Effects of Dietary Supplementation of Vitamin C and E on the Growth Performance and the Stress Response in Broiler Chickens (육계에서 비타민 C 및 E의 첨가 급여가 성장 능력과 스트레스 반응에 미치는 영향)

  • Sohn, Sea Hwan;Cho, Eun Jung;Jang, In Surk;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.40 no.1
    • /
    • pp.31-40
    • /
    • 2013
  • This study was performed to investigate the investigated effects of dietary supplementation of vitamin C and E on the growth performance and stress response in broiler chickens. Stress response was analyzed by the quantity of telomeric DNA, the rate of DNA damage and the expression levels of heat shock proteins (HSPs) and hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) genes on tissues and blood. The telomere length and telomere shortening rates were analyzed by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes and tissues. The DNA damage rate of lymphocytes was quantified by the comet assay. The expression levels of HSP70, HSP90s and HMGCR genes were measured by quantitative real-time polymerase chain reaction in lymphocytes. In results, there was no significant difference among treatments in body weight, weight gain, feed intake and mortality. The telomere shortening rate of the lymphocytes was significantly lower in the vitamin E supplemented group than the control group. The DNA damage was also decreased supplemented with vitamin C and E, as compared to the control group. The vitamin E supplemented group had a significant positive effect on the expressions of HMGCR, HSP90-${\alpha}$ and HSP90-${\beta}$ in lymphocytes, but had no significance on HSP70, as compared to the control group. We concluded that the dietary supplementation of vitamin E (100 mg/kg feed) had reduced the individual physiological stress response without stunt growth in broiler chickens.

알칼리 금속 이온과 G-quadruplex 결합체에 대한 수용액상에서의 특성 비교 연구

  • Im, Hye-Ji;Kim, Min-Ju;Ham, Si-Hyeon
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.29-38
    • /
    • 2014
  • G-quadruplex를 형성하는 DNA연속체는 텔로미어에서 발견된다. 지금까지의 연구 결과에 따르면 G-quadruplex는 다양한 유전질환과 암과의 상관관계가 있으며, 따라서 G-quadruplex에 대한 연구는 제약 개발 분야에서 활발하게 진행되고 있다. G-quadruplex는 두 개 이상의 G-tetrad들이 쌓여서 형성된 복합체를 의미하며, G-tetrad란 4개의 구아닌 염기들이 Hoogsteen의 수소결합 통해, 정사각형의 평면을 이룬 물질을 일컫는다. 이때, 알칼리 금속 이온이 G-quadruplex에서의 G-tetrad 복합체 형성에 중요한 역할을 한다는 선행연구 결과가 있다. 특히, 알칼리 금속 중 $K^+$이 가장 G-quadruplex와 결합을 잘 한다고 알려져 있는데 그 이유에 대한 분자적 관점의 설명이 이루어져 있지 않다. 따라서 본 연구에서는 먼저 G-quadruplex의 기본 구성 단위 구조인 G-tetrad와 알칼리 금속 결합체들의 수용액상에서의 구조적, 열역학적 특징을 정량적으로 비교, 분석하였다. 또한, 양자화학적 방법으로 계산된 수용액 상태에서의 결합구조에 대한 용매화 자유 에너지 계산을 수행하여 G-quadruplex 간의 자기 조립 (self-assembly) 현상을 설명하였다.

  • PDF

Effect of Hatching and Brooding Season of Chicks on Their Heat Stress Response and Production Performances (병아리의 발생시기 및 육성계절이 열 스트레스 반응과 생산능력에 미치는 영향)

  • Cho, Eun Jung;Choi, Eun Sik;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.46 no.2
    • /
    • pp.77-86
    • /
    • 2019
  • This study was conducted to compare the heat stress response and production performance of chicks hatched in winter and summer. Among the 2,090 Korean native chickens examined, 1,156 hatched in winter and 934 hatched in summer. The amount of telomeric DNA, the expression of heat shock protein (HSP) genes, survival rate, egg production, and body weight were analyzed to evaluate the stress response and production performance of chickens. The results showed that the expression of HSP-70, $HSP-90{\alpha}$, and $HSP-90{\beta}$ genes in the winter-hatched chickens were significantly higher than those in the summer-hatched chickens during the growing and laying period (P<0.05). There was no significant difference in the amount of telomeric DNA between summer- and winter-hatched chickens. The survival rate was significantly higher in the summer-hatched chickens than in the winter-hatched chickens at the laying period (P<0.01). The hen-day egg production and egg weight in the summer-hatched chickens were also significantly higher than those in the winter-hatched chickens (P<0.05). In contrast, age of sexual maturity of winter-hatched chickens was significantly earlier than that of summer-hatched chickens (P<0.01). The body weights from birth to 24 weeks were significantly lighter in the summer-hatched chickens than in the winter-hatched chickens, however, it was reversed after 28 weeks (P<0.05). In conclusion, the chicks hatched in the summer are more resistant to heat stress, with better productivity than the chicks hatched in the winter. These results suggest that the chicks grown at high temperatures have greater adaptability to the thermal environment.

Comparison of Growth Performance and Stress Response between Male and Female Korean Native Commercial Chickens (토종실용닭의 암수 간 산육 능력 및 스트레스 반응 정도 비교)

  • Sohn, Sea Hwan;Cho, Eun Jung;Kim, Ki Gon;Shin, Ka Bin;Lee, Seul Gy
    • Korean Journal of Poultry Science
    • /
    • v.49 no.2
    • /
    • pp.89-98
    • /
    • 2022
  • This study compared the production and physiological characteristics of male and female Korean native commercial chickens. We investigated the growth performance, vitality, and stress response of 479 male and 608 female chickens from 1 d to 12 weeks of age. The body weight, feed consumption and feed conversion ratio were measured as growth performance. The survival rate, amount of telomeric DNA, DNA damage rate, heterophil-lymphocyte ratio (H/L ratio), and heat shock protein (HSP)-70, HSP-90α, and HSP-90β gene expression levels were analyzed as indicators of vitality and stress response. Body weight was significantly higher in male chickens than in female chickens after 2 weeks of age (P<0.01). Feed intake was higher in male chickens than in female chickens, whereas the feed conversion ratio showed the opposite trend. The survival rate was significantly higher in female chickens than in male chickens (82.8% vs. 73.8%, P<0.05). Stress response analysis revealed no differences between male and female chickens in terms of telomeric DNA content, DNA damage rate, H/L ratio, and HSP gene expression levels. Taken together, it was concluded that there was a significant difference in the growth performance and survival rate between male and female Korean native commercial chickens, whereas there was no difference in the degree of stress response between them. Therefore, in terms of the productivity of Korean native commercial chickens, it is judged that separate-sex rearing is much more advantageous than mixed rearing, regardless of the physiological characteristics of males and females.

Recent Trends on Telomerase Activators, Sirtuin Activators, and Senolytics as a Potential Anti-aging Agent (잠재적인 항노화제로 텔로머레이즈 활성화제, 서르튜언 활성화제, 세노릭틱스에 대한 최신 동향)

  • Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.819-825
    • /
    • 2020
  • All living organisms exhibit the characteristics of aging, such as skin wrinkle formation, muscle degeneration, cataracts, and hair graying as the number of aged cells increases over time. Senescence, which is known as a key cause of aging, is directly related to the aging of living organisms because cells are aged by external and internal factors and eventually cell proliferation is stopped. Senescence is caused by the gradual shortening of the telomere with cell division, and lifespan is determined by the length of the telomere. Recently, it has been found that the histone deacetylase, which can influence gene expression, is not only involved in yeast but also deeply involved in anti-aging mechanisms in both C. elegans and humans. It was also discovered that old cells play a decisive role in the aging phenomenon, and it has been reported that it is possible to promote the proliferation of young cells and delay aging by removing these senescent cells from the inside. Therefore, in order to develop potential anti-aging agents in the future, research should begin with an in-depth study of telomerase activators, sirtuin activators, and senolytics.

Heat Shock Proteins in Heat Stressed Chickens (닭의 열 스트레스와 열충격단백질)

  • Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.219-227
    • /
    • 2020
  • As the earth's average temperature rises, crop and livestock productions are at risk. Chickens are sensitive to heat stress, and increased temperatures may have adverse effects on their production performance and animal welfare. Reliable stress measurements are crucial for heat stress adaptation. Therefore, various measurement methods and biomarkers are used to evaluate poultry stress levels. Heat shock proteins (HSPs) are heat sensitive biological markers that are highly expressed under stress, thereby acting as a cellular thermometer. HSPs also have chaperone activity, which protects cells from heat stress. This review details the role of HSP70 as a molecular chaperone and biomarker for heat stress, which is important for breeding climate-adaptable, thermo-tolerant poultry.