• Title/Summary/Keyword: 텐션 마스크

Search Result 4, Processing Time 0.027 seconds

A Study for Reducing Tension Loosening in CRT Tension Mask (CRT 텐션 마스크의 장력 이완 저감을 위한 연구)

  • 정일섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.214-221
    • /
    • 2003
  • Tension mask assembly is positioned right behind the glass-made front panels of CRT type display devices. The frame-supported thin metal sheet contains numerous slits, through which electron beams are focused to enhance definition. Pretension is imposed on the masks, especially for enlarged flat screens, in order to avoid vibration due to acoustic or mechanical impact. High temperature assembly process subsequent to pretensioning, however, degenerates the creep resistance of common mask materials, and if tensile stress is high enough, tension on the mask may be loosened substantially due to creep deformation. In this study, the assembly is modeled as a combined structure of beams and wire array, and a numerical simulation is attempted for pretensioning followed by high temperature process. According to a model study, small amount of creep strain is likely to be generated, but its adverse influence is not negligible. Some structural modification measures to reduce the creep-induced tension loosening are proposed and evaluated. Also, optimal configuration of frame structure is sought for, which maintains high tension of masks and minimizes the possible creep of frame simultaneously.

Creep-Induced Tension Loosening of CRT Tension Mask (크리프에 따른 CRT 텐션 마스크의 장력 이완)

  • Chung, Il-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1034-1040
    • /
    • 2003
  • Tension mask is a part of CRT type devices, which is installed right behind glass-made front panel. Numerous slits on the thin metal sheet enable the electron beams emitted from posterior gun to be focused, resulting in enhanced definition. Flattened and enlarged displays necessitate the imposition of pretension on the masks, in order to improve the robustness of display quality against vibration or impact. High temperature assembly process subsequent to pretensioning, however, degenerates creep resistance of mask material, and common mask may become susceptible to undesirable elongation due to creep. Once tensile stress becomes high enough to induce creep deformation, pretension is substantially loosened. In this study, tension mask assembly is modeled as a combined structure of beams and wire array, and a numerical simulation is attempted for pretensioning followed by high temperature process. Based on a model study, creep occurrence is found to be probable and its adverse influence is quantified. As fur maintaining high tensile force, simply increasing pretension does not seem to be helpful. Instead, the structure of frame needs to be modified somehow, or material for mask needs to be selected properly.

Analysis of Tension Mask Thermal Deformations under Localized Heating and Prediction of Electron Beam Landing Shifts (국부가열에 의한 Tension Mask 의 열변형 해석 및 전자빔의 오착 예측)

  • Shin, Woon-Seo;You, Se-Jonn;Jang, Bo-Woong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.138-148
    • /
    • 1999
  • Thermal deformations of tension mask under localized heating are analyzed using finite element method and electron beam landing shifts are predicted by the analysis results. In CRT, electron beam landing shifts due to thermal deformations of the tension mask make the color purity of screen worse. In order to get the final results of thermal deformations, firstly the tension processes of the mask and following welding processes between the tensional mask and rail must be analyzed sequentially. And then, nonlinear transient thermo-elastic finite element analysis is performed on every part inside CRT including tension mask, wherein thermal radiation is a main heat transfer mechanism. Because the tension mask has numerous slits, the effective thermal conductivity and effective and effective elastic modulus is calculated, and the tension mask is modeled as a shell without slits. From the displacement results of tension mask, electron beam landing shifts is calculated directly. Experiments are performed to confirm our analysis results. Temperature distributions and beam landing shifts of tension mask are measured and the results are in good agreement with those of analyses.

  • PDF

Few-shot Aerial Image Segmentation with Mask-Guided Attention (마스크-보조 어텐션 기법을 활용한 항공 영상에서의 퓨-샷 의미론적 분할)

  • Kwon, Hyeongjun;Song, Taeyong;Lee, Tae-Young;Ahn, Jongsik;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.685-694
    • /
    • 2022
  • The goal of few-shot semantic segmentation is to build a network that quickly adapts to novel classes with extreme data shortage regimes. Most existing few-shot segmentation methods leverage single or multiple prototypes from extracted support features. Although there have been promising results for natural images, these methods are not directly applicable to the aerial image domain. A key factor in few-shot segmentation on aerial images is to effectively exploit information that is robust against extreme changes in background and object scales. In this paper, we propose a Mask-Guided Attention module to extract more comprehensive support features for few-shot segmentation in aerial images. Taking advantage of the support ground-truth masks, the area correlated to the foreground object is highlighted and enables the support encoder to extract comprehensive support features with contextual information. To facilitate reproducible studies of the task of few-shot semantic segmentation in aerial images, we further present the few-shot segmentation benchmark iSAID-, which is constructed from a large-scale iSAID dataset. Extensive experimental results including comparisons with the state-of-the-art methods and ablation studies demonstrate the effectiveness of the proposed method.