• Title/Summary/Keyword: 텍스트 이미지

Search Result 734, Processing Time 0.026 seconds

Image Generation from Korean Dialogue Text via Prompt-based Few-shot Learning (프롬프트 기반 퓨샷 러닝을 통한 한국어 대화형 텍스트 기반 이미지 생성)

  • Eunchan Lee;Sangtae Ahn
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.447-451
    • /
    • 2022
  • 본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.

  • PDF

Korean and English Text Image Super-Resolution for Improving Text Recognition Accuracy (텍스트 인식률 개선을 위한 한글 및 영어 텍스트 이미지 초해상화)

  • Kwon, Junhyeong;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.72-75
    • /
    • 2022
  • 야외 환경을 카메라로 촬영한 일반 영상에서 텍스트 이미지를 검출하고 인식하는 기술은 로봇 비전, 시각 보조 등의 기반이 되는 기술로 활용될 수 있어 매우 중요한 기술이다. 하지만 저해상도의 텍스트 이미지의 경우 텍스트 이미지에 포함된 노이즈나블러 등이 더 두드러지기 때문에 텍스트 내용을 인식하는 것이 어렵다. 이에 본 논문은 일반 영상에서의 저해상도 한글 및 영어 텍스트에 대한 이미지 초해상화를 통해 텍스트 인식 정확도를 개선하였다. 트랜스포머에 기반한 모델로 한글 및 영어 텍스트에 대한 이미지 초해상화를 수행하였으며, 영어 및 한글 데이터셋에 대해 제안한 초해상화 방법을 적용했을 때 그렇지 않을 때보다 텍스트 인식 성능이 개선되는 것을 확인하였다.

  • PDF

The Study of Making Interface for Text to Image (텍스트를 이미지화하기 위한 Interface 제작에 관한 연구 -작품 "Yesterday to Today"를 중심으로-)

  • Lee, Woo-Hyun;Lee, Sung-Young;Kim, Kyu-Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02c
    • /
    • pp.194-198
    • /
    • 2007
  • 본 연구의 주제는 텍스트를 어떻게 회화적이미지로 전환시킬 수 있을까?에 대한 것이다. 오늘날 디지털 환경 속에 있는 우리는 이미지 중심의 세계 속에 살고 있다. 과거 텍스트가 해왔던 정보의 생산과 전달 그리고 저장의 역할을 오늘날은 상당부분 이미지가 하게 되었다. 하지만 그럼에도 불구하고 아날로그 방식과 정서는 여전히 우리 곁에 남아있는 것도 사실이다. "Yesterday to Today"는 문자의 최소 단위인 알파벳을 통하여 이미지를 재현하려는 작품이다. 이 작품은 크게 두 가지 Idea로 이루어지는데 하나는 복수개의 실시간 영상 소스를 이용하여 이미지를 구성해내는 것과, 다른 하나는 텍스트에 의한 이미지의 변환이다. 복수개의 실시간 영상 소스는 프로그램이 작동하는 컴퓨터와 직/간접적으로 연결되어 전달되는데, 직접적으로 연결되어 근거리의 특정한 지점으로부터 영상 소스를 받을 수 있고, 또 하나의 방법은 인터넷을 통한하나 이상의 원거리 지점으로부터 보내어지는 영상을 조합하여 받을 수 있다. 프로그램 구현 개념은 픽셀 소스 카메라에서 캡쳐된 최초 이미지를 명도, 색상, 채도로 분류하고, 이것의 각각을 26개의 구간-자판의 개수에 의하여 정해짐-으로 나누고, 다시 그 각각의 구간을 26단계로 나눈다. 이렇게 나누어진 구간들은 알파벳과 1:1로 대응시켜 결과이미지의 해당 부분을 수치대로 재현하도록 프로그램 시킨다. 이미지의 부분들을 지정하기 위하여 특정한 텍스트로부터 알파벳의 빈도수를 조사했는데, 이 조사를 바탕으로 빈도수의 많고 적음에 따라 이미지부분들이 26개 구간으로 정해졌다. 이미지 재현 방법은 사용자가 모니터 위의 Result Image Cam을 통하여 얻고자 하는 이미지를 캡쳐한 후, 특정한 텍스트를 타이핑하면 이미지를 재현할 수 있는데, -입력된 텍스트의 알파벳은 프로그램이 지정한 HSI 컬러 모델의 영역과 1:1로 대응하게 하였다-이 이미지는 특정 장소에 실시간으로 받아진 영상을 데이터화 한 소스에 의하여 만들어진다. 이미지를 재현할 때 텍스트에 따라 알파벳 빈도수는 달라질 수 있으므로 비록 최초 이미지가 동일할지라도 얻고자하는 결과 이미지가 달라진다. 그러므로 사용자는다양한 창조적 경험을 할 수 있다.

  • PDF

Design of Intelligeng Web Image Search Engine (지능적 웹 이미지 검색 엔진의 설계)

  • 박명선;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.51-53
    • /
    • 1999
  • 기존의 웹 이미지 검색 엔진은 웹 이미지를 검색할 때 웹 이미지의 특징과, 웹 이미지를 포함한 HTML 문서의 텍스트를 이용한다. 그러나, 텍스트는 문맥에 따라 의미가 달라질 수 있으므로, 검색 대상을 미리 분류하면 검색 효율을 높일 수 있다. 본 논문은 웹 문서의 텍스트에서 이미지와 관련이 있는 이미지 설명 텍스트를 자동으로 추출하고, 검색 효율을 높이기 위하여 웹 이미지를 자동으로 분류하는 지능적 웹 이미지 검색 엔진을 제안한다. 지능적 웹 이미지 검색 엔진은 분류와 용어, 용어와 용어 사이의 연관도를 이용하여 분류의 정확도를 높인다.

  • PDF

Recovery of Erased Character Strokes in the Extraction of Text Using Color Information (칼라정보에 기반한 텍스트 영역 추출에서의 지워진 획 복구)

  • Kim Seon-Hyung;Kim Ji-Soo;Kim Soo-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.657-660
    • /
    • 2006
  • 자연영상이나 스팸메일 영상으로부터 텍스트 영역을 추출하고 추출한 텍스트 영역에 이진화를 수행하고 나면 가로 방향이나 세로획 방향으로 놓여 있는 "1" 그리고 "ㅡ" 에 해당하는 한글의 종성부분이 이미지 내의 잡영을 지울 때 종종 지워지는 결과를 볼 수 있다. 이렇게 지워진 획 부분을 되살리기 위한 방법으로 텍스트 Hinting 알고리즘을 제안한다. 텍스트 Hinting 알고리즘은 이진화된 이미지의 텍스트 픽셀 위치와 동일한 좌표에 해당하는 원본 이미지의 RGB 값을 추출하여 추출된 텍스트 후보 영역의 색상을 알아낸다. 추출된 텍스트 색상 레이어 이미지와 이진화된 이미지에 OR연산을 수행하게 되면 지워진 획 부분을 복원할 수 있다. 제안한 방법을 스팸 이미지에 적용한 결과 텍스트 추출결과를 획기적으로 개선할 수 있음을 보였다.

  • PDF

Scene Text Detection Using Color-Based Binarization and Text Region Verification Using Support Vector Machine (색기반 이진화를 이용한 장면 텍스트 추출과 써포트 벡터머신을 이용한 텍스트 영역 검증)

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.161-163
    • /
    • 2007
  • 기존의 텍스트 추출을 위한 이진화 방법은 입력 이미지를 명도 이미지로 변환한 뒤 이진화 하는 방법을 사용하였다. 이러한 방법은 칼라 이미지에서는 극명히 구분되는 색이라 할지라도 명도 이미지로 변환하는 과정에서 같은 밝기를 같게 되는 경우(예를 들어, 배경은 붉은색, 텍스트는 초록색), 텍스트를 추출하는 데 어려움이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 입력 이미지를 R, G, B로 분리하고 각각을 이진화 하여 텍스트를 추출하고 다해상도 웨이블릿(Wavelet) 변환을 이용하여 텍스트의 획 특징을 추출하여 추출된 특징들을 SVM(Support Vector Machine) 분류기로 검증하여 최종 텍스트 영역을 확정한다. 제안한 방법을 적용함으로써 명도 정보만으로는 추출하기 어려웠던 텍스트 영역을 효과적으로 추출하고 텍스트와 구별하기 어려운 영역을 획수준으로 검증할 수 있었다.

  • PDF

Analyzing insurance image using text network analysis (텍스트 네트워크 분석을 이용한 보험 이미지 분석)

  • Park, Kyungbo;Ko, Haeree;Hong, Jong-Yi
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.531-541
    • /
    • 2018
  • This study researched text mining and text network analysis to analyze the images of Nonghyup Insurance for consumers. With the recent development of social media, many texts are being produced and reproduced, and texts of social media provide important information to companies. Text mining and text network analysis are used in many studies to identify image of company and product. As a result of the text analysis, the positive image of the Nonghyup Insurance is safety and stability. Negative images of the Nonghyup Insurance is concern and anxiety. As a result of the textual network analysis, Centered mage of Nonghyup Insurance is safety and concern. This paper allows researchers to extract several lessons learned that are important for the text mining and text network analysis.

Text Extraction using Character-Edge Map Feature From Scene Images (장면 이미지로부터 문자-에지 맵 특징을 이용한 텍스트 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Kwon, Kyo-Hyun;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.139-142
    • /
    • 2006
  • 본 연구는 장면 이미지로부터 텍스트에 존재하는 문자-에지 특징을 이용하여 텍스트를 추출하는 방법을 제안한다. 캐니(Canny)에지 연산자를 이용하여 장면 이미지로부터 에지를 추출하고, 추출된 에지로부터 16종류의 에지-맵 생성한다. 생성된 에지 맵을 재구성하여 문자 특징을 갖는 8종류의 문자-에지 맵을 만단다. 텍스트는 배경과 잘 분리되는 특징이 있으므로 텍스트에 존재하는 '문자-에지 맵'의 특징을 이용하여 텍스트를 추출한다. 텍스트 영역에 대한 검증은 문자-에지 맵의 분포와 텍스트에 존재하는 글자간의 공백 특징으로 한다. 제안한 방법은 다양한 종류의 장면 이미지를 실험대상으로 하였고, 텍스트는 적어도 2글자 이상으로 구성된다는 제한조건과 너무 크거나 작은 텍스트는 텍스트 추출에서 제외하였다. 실험결과 텍스트 영역 추출률은 약 83%를 얻었다.

  • PDF

Multi-modal Image Processing for Improving Recognition Accuracy of Text Data in Images (이미지 내의 텍스트 데이터 인식 정확도 향상을 위한 멀티 모달 이미지 처리 프로세스)

  • Park, Jungeun;Joo, Gyeongdon;Kim, Chulyun
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.148-158
    • /
    • 2018
  • The optical character recognition (OCR) is a technique to extract and recognize texts from images. It is an important preprocessing step in data analysis since most actual text information is embedded in images. Many OCR engines have high recognition accuracy for images where texts are clearly separable from background, such as white background and black lettering. However, they have low recognition accuracy for images where texts are not easily separable from complex background. To improve this low accuracy problem with complex images, it is necessary to transform the input image to make texts more noticeable. In this paper, we propose a method to segment an input image into text lines to enable OCR engines to recognize each line more efficiently, and to determine the final output by comparing the recognition rates of CLAHE module and Two-step module which distinguish texts from background regions based on image processing techniques. Through thorough experiments comparing with well-known OCR engines, Tesseract and Abbyy, we show that our proposed method have the best recognition accuracy with complex background images.

Image Generation based on Text and Sketch with Generative Adversarial Networks (생성적 적대 네트워크를 활용한 텍스트와 스케치 기반 이미지 생성 기법)

  • Lee, Je-Hoon;Lee, Dong-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.293-296
    • /
    • 2018
  • 생성적 적대 네트워크를 활용하여 텍스트, 스케치 등 다양한 자원으로부터 이미지를 생성하기 위한 연구는 활발하게 진행되고 있으며 많은 실용적인 연구가 존재한다. 하지만 기존 연구들은 텍스트나 스케치 등 각 하나의 자원을 통해 이미지를 생성하기 때문에 설명이 부족한 텍스트, 실제 이미지와 상이한 스케치와 같이 자원의 정보가 불완전한 경우에는 제대로 된 이미지를 생성하지 못한다는 한계가 있다. 본 논문에서는 기존 연구의 한계점올 극복하기 위해 텍스트와 스케치 두 개의 자원을 동시에 활용하여 이미지를 생성하는 새로운 생성 기법 TS-GAN 을 제안한다. TS-GAN 은 두 단계로 이루어져 있으며 각 단계를 통해 더욱 사실적인 이미지를 생성한다. 본 논문에서 제안한 기법은 컴퓨터 비전 분야에서 많이 활용되는 CUB 데이터세트를 사용하여 이미지 생성 결과의 우수성을 보인다.