• Title/Summary/Keyword: 텍스트 연구

Search Result 3,471, Processing Time 0.031 seconds

Exploring Potential Application Industry for Fintech Technology by Expanding its Terminology: Network Analysis and Topic Modelling Approach (용어 확장을 통한 핀테크 기술 적용가능 산업의 탐색 :네트워크 분석 및 토픽 모델링 접근)

  • Park, Mingyu;Jeon, Byeongmin;Kim, Jongwoo;Geum, Youngjung
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.1
    • /
    • pp.1-28
    • /
    • 2021
  • FinTech has been discussed as an important business area towards technology-driven financial innovation. The term fintech is a combination of finance and technology, which means ICT technology currently associated with all finance areas. The popularity of the fintech industry has significantly increased over time, with full investment and support for numerous startups. Therefore, both academia and practice tried to analyze the trend of the fintech area. Despite the fact, however, previous research has limitations in terms of collecting relevant databases for fintech and identifying proper application areas. In response, this study proposed a new method for analyzing the trend of Fintech fields by expanding Fintech's terminology and using network analysis and topic modeling. A new Fintech terminology list was created and a total of 18,341 patents were collected from USPTO for 10 years. The co-classification analysis and network analysis was conducted to identify the technological trends of patent classification. In addition, topic modeling was conducted to identify the trends of fintech in order to analyze the contents of fintech. This study is expected to help both managers and investors who want to be involved in technology-driven financial services seize new FinTech technology opportunities.

Sell-sumer: The New Typology of Influencers and Sales Strategy in Social Media (셀슈머(Sell-sumer)로 진화한 인플루언서의 새로운 유형과 소셜미디어에서의 세일즈 전략)

  • Shin, Hajin;Kim, Sulim;Hong, Manny;Hwang, Bom Nym;Yang, Hee-Dong
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.217-235
    • /
    • 2021
  • As 49% of the world's population uses social media platforms, communication and content sharing within social media are becoming more active than ever. In this environmental base, the one-person media market grew rapidly and formed public opinion, creating a new trend called sell-sumer. This study defined new types of influencers by product category by analyzing the subject concentration of the commercial/non-commercial keywords of influencers and the impact of the ratio of commercial postings on sales. It is hoped that influencers working within social media will be helpful to new sales strategies that are transformed into sell-sumers. The method of this study classifies influencers' commercial/non-commercial posts using Python, performs text mining using KoNLPy, and calculates similarity between FastText-based words. As a result, it has been confirmed that the higher the keyword theme concentration of the influencer's commercial posting, the higher the sales. In addition, it was confirmed through the cluster analysis that the influencer types for each product category were classified into four types and that there was a significant difference between groups according to sales. In other words, the implications of this study may suggest empirical solutions of social media sales strategies for influencers working on social media and marketers who want to use them as marketing tools.

Research on public sentiment of the post-corona new normal: Through social media (SNS) big data analysis (포스트 코로나 뉴노멀에 대한 대중감성 연구: 소셜미디어(SNS) 빅데이터 분석을 통해)

  • Ann, Myung-suk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.209-215
    • /
    • 2022
  • In this study, detailed factors of public sentiment toward the 'post-corona new normal' were examined through social media big data sentiment analysis. Thus, it is to provide basic data to preemptively cope with the post-COVID-19 era. For data collection and analysis, the emotional analysis program of 'Textom', a big data analysis program, was used. The data collection period is one year from October 5, 2020 to October 5, 2021, and the collection channels are set as blogs, cafes, Twitter, and Facebook on Daum and Naver. The original data edited and refined a total of 3,770 collected texts from this channel were used for this study. The conclusion is as follows. First, there is a high level of interest and liking for the 'post-corona new normal'. In other words, it can be seen that optimism such as daily recovery, technological growth, and expectations for a new future took the lead at 77.62%. Second, negative emotions such as sadness and rejection are 22.38% of the total, but the intensity of emotions is 23.91%, which is higher than the ratio, suggesting that these negative emotions are intense. This study has a contribution to the detailed factor analysis of the public's positive and negative emotions through big data analysis on the 'post-corona new normal'.

Exploratory Study on the Specification of Content Knowledge Formation - Based on Analysis of University Writing Textbooks - (글쓰기 내용지식 구성의 세분화에 관한 탐색적 연구 - 대학 글쓰기교재 분석을 중심으로 -)

  • Lee, Ran
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.486-497
    • /
    • 2022
  • The aim of this study was to subdivide and present the units and the standards of knowledge integration in creating the students' integrated knowledge from content knowledge in college writing classes. For these, it analyzed three typical writing textbooks being used in colleges and examined the ways of presentation on forming integrated knowledge by text qualitative analysis methods. The analysis procedure and the presentation followed Creswell's spiral analysis model It is a method model which repeats the procedure from material collection and analysis to presentation circularly. This examination illustrates three dimensions of the units in forming content knowledge. Also, it suggested those should be all treated for the more systematic education: the units of the whole text, the paragraphs, and the sentences. In the next chapter, the standards and contents of knowledge integration were suggested in each process. For the process of knowledge selection, the suitability and the contradictoriness between the text materials and author's thesis were proposed as the standards and contents. For the process of organization and integration, the corresponsive integration, contradictive integration, background integration, synthetic integration were suggested. Finally the procedure knowledge such as correct expression and spelling, source indication were shown for the process of expression and citation. Furthermore, it showed, in terms of expression, the process of paraphrasing frequently practiced in writing textbooks needs to be exercised in the three dimensions including summarization, connection, and interpretation(or transformation). This result, however, calls for the further study about the subdividing processes to enhance the adequateness to writing textbooks in the level of universities and for a more refined syllabus on the systematic knowledge integration. Accordingly, it suggested the tasks mentioned above for further study.

The Effect of Virtual Human Lecturer's Human Likeness on Educational Content Satisfaction: Focused on the Theory of Experiential Economy (가상 휴먼 강사의 인간 유사도가 교육 콘텐츠 만족감에 미치는 영향: 체험경제이론을 중심으로)

  • Gong, Li;Bae, Sujin;Kwon, Ohbyung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.524-539
    • /
    • 2022
  • With the advent of generative artificial intelligence technology, it became possible to create a virtual human, and produce a lecture video only with textual information. It is expected that the virtual human will enhance the efficient production of educational contents and the student's entertainment experience and satisfaction. However, there have been still few studies that have demonstrated the process of how virtual human technology reaches students' satisfaction. Therefore, the purpose of this study is to empirically examine whether the human likeness, which is the main characteristic of a virtual human based on Uncanny Valley theory, affects human experience and satisfaction. In particular, human likeness of the Uncanny Valley theory was subdivided into human likeness in the visual and verbal dimensions, and the process of reaching satisfaction was understood based on the experience economy model. In particular, human similarity in Uncanny Valley theory was classified as similarity in the visual and language levels, and the process of reaching satisfaction based on the experiential economic model was analyzed with a partial least squares structure model equation (PLS-SEM). The survey was conducted online for a panel of office workers at a specialized research institution in China. The results indicate that both the visual and verbal human likeness had a positive effect on experience economy factors (education, entertainment, esthetic, escape), and then these experiential factors had a significant effect on satisfaction. The results also provide some suggestions to consider when designing educational contents by virtual human.

A Study on the Automatic Digital DB of Boring Log Using AI (AI를 활용한 시추주상도 자동 디지털 DB화 방안에 관한 연구)

  • Park, Ka-Hyun;Han, Jin-Tae;Yoon, Youngno
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.119-129
    • /
    • 2021
  • The process of constructing the DB in the current geotechnical information DB system needs a lot of human and time resource consumption. In addition, it causes accuracy problems frequently because the current input method is a person viewing the PDF and directly inputting the results. Therefore, this study proposes building an automatic digital DB using AI (artificial intelligence) of boring logs. In order to automatically construct DB for various boring log formats without exception, the boring log forms were classified using the deep learning model ResNet 34 for a total of 6 boring log forms. As a result, the overall accuracy was 99.7, and the ROC_AUC score was 1.0, which separated the boring log forms with very high performance. After that, the text in the PDF is automatically read using the robotic processing automation technique fine-tuned for each form. Furthermore, the general information, strata information, and standard penetration test information were extracted, separated, and saved in the same format provided by the geotechnical information DB system. Finally, the information in the boring log was automatically converted into a DB at a speed of 140 pages per second.

Development of a Web-based Presentation Attitude Correction Program Centered on Analyzing Facial Features of Videos through Coordinate Calculation (좌표계산을 통해 동영상의 안면 특징점 분석을 중심으로 한 웹 기반 발표 태도 교정 프로그램 개발)

  • Kwon, Kihyeon;An, Suho;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • In order to improve formal presentation attitudes such as presentation of job interviews and presentation of project results at the company, there are few automated methods other than observation by colleagues or professors. In previous studies, it was reported that the speaker's stable speech and gaze processing affect the delivery power in the presentation. Also, there are studies that show that proper feedback on one's presentation has the effect of increasing the presenter's ability to present. In this paper, considering the positive aspects of correction, we developed a program that intelligently corrects the wrong presentation habits and attitudes of college students through facial analysis of videos and analyzed the proposed program's performance. The proposed program was developed through web-based verification of the use of redundant words and facial recognition and textualization of the presentation contents. To this end, an artificial intelligence model for classification was developed, and after extracting the video object, facial feature points were recognized based on the coordinates. Then, using 4000 facial data, the performance of the algorithm in this paper was compared and analyzed with the case of facial recognition using a Teachable Machine. Use the program to help presenters by correcting their presentation attitude.

A Convergence Study for Development of Psychological Language Analysis Program: Comparison of Existing Programs and Trend Analysis of Related Literature (심리학적 언어분석 프로그램 개발을 위한 융합연구: 기존 프로그램의 비교와 관련 문헌의 동향 분석)

  • Kim, Youngjun;Choi, Wonil;Kim, Tae Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.1-18
    • /
    • 2021
  • While content word-based frequency analysis has obvious limitations to intentional deception or irony, KLIWC has evolved into functional word analysis and KrKwic has evolved as a way to visualize co-occurrence frequencies. However, after more than 10 years of development, several issues still need improvement. Therefore, we tried to develop a new psychological language analysis program by analyzing KLIWC and KrKwic. First, the two programs were analyzed. In particular, the morpheme classification of KLIWC and the Korean morpheme analyzer was compared to enhance the functional word analysis function, and the psychological dictionary were analyzed to strengthen the psychological analysis. As a result of the analysis, the Hannanum part-of-speech analyzer was the most subdivided, but KLIWC for personal pronouns and KKMA for endings and endings were more subdivided, suggesting the integrated use of multiple part-of-speech analyzers to strengthen functional word analysis. Second, the research trends of studies that analyzed texts with these programs were analyzed. As a result of the analysis, the two programs were used in various academic fields, including the field of Interdisciplinary Studies. In particular, KrKwic was used a lot for the analysis of papers and reports, and KLIWC was used a lot for the comparative study of the writer's thoughts, emotions, and personality. Based on these results, the necessity and direction of development of a new psychological language analysis program were suggested.

A Study on the Factors of Well-aging through Big Data Analysis : Focusing on Newspaper Articles (빅데이터 분석을 활용한 웰에이징 요인에 관한 연구 : 신문기사를 중심으로)

  • Lee, Chong Hyung;Kang, Kyung Hee;Kim, Yong Ha;Lim, Hyo Nam;Ku, Jin Hee;Kim, Kwang Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.354-360
    • /
    • 2021
  • People hope to live a healthy and happy life achieving satisfaction by striking a good work-life balance. Therefore, there is a growing interest in well-aging which means living happily to a healthy old age without worry. This study identified important factors related to well-aging by analyzing news articles published in Korea. Using Python-based web crawling, 1,199 articles were collected on the news service of portal site Daum till November 2020, and 374 articles were selected which matched the subject of the study. The frequency analysis results of text mining showed keywords such as 'elderly', 'health', 'skin', 'well-aging', 'product', 'person', 'aging', 'female', 'domestic' and 'retirement' as important keywords. Besides, a social network analysis with 45 important keywords revealed strong connections in the order of 'skin-wrinkle', 'skin-aging' and 'old-health'. The result of the CONCOR analysis showed that 45 main keywords were composed of eight clusters of 'life and happiness', 'disease and death', 'nutrition and exercise', 'healing', 'health', and 'elderly services'.

Metamodeling Construction for Generating Test Case via Decision Table Based on Korean Requirement Specifications (한글 요구사항 기반 결정 테이블로부터 테스트 케이스 생성을 위한 메타모델링 구축화)

  • Woo Sung Jang;So Young Moon;R. Young Chul Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.381-386
    • /
    • 2023
  • Many existing test case generation researchers extract test cases from models. However, research on generating test cases from natural language requirements is required in practice. For this purpose, the combination of natural language analysis and requirements engineering is very necessary. However, Requirements analysis written in Korean is difficult due to the diverse meaning of sentence expressions. We research test case generation through natural language requirement definition analysis, C3Tree model, cause-effect graph, and decision table steps as one of the test case generation methods from Korean natural requirements. As an intermediate step, this paper generates test cases from C3Tree model-based decision tables using meta-modeling. This method has the advantage of being able to easily maintain the model-to-model and model-to-text transformation processes by modifying only the transformation rules. If an existing model is modified or a new model is added, only the model transformation rules can be maintained without changing the program algorithm. As a result of the evaluation, all combinations for the decision table were automatically generated as test cases.