• Title/Summary/Keyword: 텍스트 연구

Search Result 3,492, Processing Time 0.028 seconds

Bibliometric Analysis on the Research Trends in Journal of Convergence for Information Technology (중소기업융합학회 수록 논문의 연구동향에 대한 계량서지학적 분석)

  • Kim, Shin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.122-130
    • /
    • 2020
  • The purpose of this study is to identify current states and trends of convergence researches by conducting a bibliometric analysis of the papers in the Convergence Society for SMB. After 792 papers from 2012 to 2019 were collected, we analyzed network analysis by using centrality through extracting of nouns and compound nouns with text mining and 3 times of pre-processing and purification processing. According to the results, first, quantitative and qualitative aspects of the researches since 2016 improved, studies focused on words such as influence, convergence, mediating effect, satisfaction, and effect. Second, in the first half (2012-2015), engineering and technical studies were intensively conducted based on topics such as information, system, and security. Third, in the period of the second half (2016-2019), the research scope was expanded to college students, parents, teenagers under the topics of job, self-efficacy, education, satisfaction, depression, and stress. The results of this study are meaningful in identifying existing research trends and in providing information which requires the expansion of new research areas.

Investigation of Research Trends in the D(Data)·N(Network)·A(A.I) Field Using the Dynamic Topic Model (다이나믹 토픽 모델을 활용한 D(Data)·N(Network)·A(A.I) 중심의 연구동향 분석)

  • Wo, Chang Woo;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2020
  • The Topic Modeling research, the methodology for deduction keyword within literature, has become active with the explosion of data from digital society transition. The research objective is to investigate research trends in D.N.A.(Data, Network, Artificial Intelligence) field using DTM(Dynamic Topic Model). DTM model was applied to the 1,519 of research projects with SW·A.I technology classifications among ICT(Information and Communication Technology) field projects between 6 years(2015~2020). As a result, technology keyword for D.N.A. field; Big data, Cloud, Artificial Intelligence, extended keyword; Unstructured, Edge Computing, Learning, Recognition was appeared every year, and accordingly that the above technology is being researched inclusively from other projects can be inferred. Finally, it is expected that the result from this paper become useful for future policy·R&D planning and corporation's technology·marketing strategy.

Exploring Domestic ESG Research Trends: Focusing on Domestic Research on ESG from 2012 to 2021 (국내 ESG 연구동향 탐색: 2012~2021년 진행된 국내 학술연구 중심으로)

  • Park, Jae Hyun;Han, Hyang Won;Kim, Na Ra
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.191-211
    • /
    • 2022
  • As the value of highly sustainable companies increases, ESG(Environmental, Social, and Governance) has emerged as the biggest topic of discussion for companies around the world. In addition, as domestically, more research is being done on ESG in line with global trends, it is necessary to examine ESG research trends. Accordingly, ESG academic papers that have been published for the past 10 years were collected for each year, and frequency analysis was conducted using text mining techniques regarding key themes and thesis titles. This paper analyzed the number of selected publications by year and the cumulated number of studies through bibliometric analysis. The findings suggested that the number of ESG papers is increasing each year and that academic interest in ESG-related issues continues to abound. Next, according to the results of frequency analysis of the keywords and titles of the research papers, the words- "ESG", "company", "society", "responsibility", "management", "investment", and "sustainability"- were extracted. This analysis identified the research fields and keywords that have been relevant to ESG in the past 10 years. As a result of comparing the major ESG issues presented in recent overseas studies and the common factors of the ESG key keywords presented in this study, it was confirmed that the environment is the focus of recent studies compared to previous studies. Third, it was found that the data used by domestic ESG studies mainly include the KEJI index, the KRX index, and the KCGS ESG evaluation index. After identifying the main research subjects of ESG papers, research found that 8 out of 152 domestic ESG studies were focused on SMEs. Through this study, it was possible to confirm the ESG research trend and increase in research, and future researchers divided the research topics and research keywords and presented basic data for selecting more diverse research topics. Based on both, the arguments of previous ESG studies conducted on SMEs and the results of this study, there is a lack of studies on guidelines for ESG practice and their application to SMEs, and more ESG research regarding SMEs will need to be conducted in the future.

A Study on the Semantic Network Structure of the Regime in the Image Contents (영상콘텐츠분야의 정권별 의미연결망 연구)

  • Hwang, Go-Eun;Moon, Shin-Jung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.3
    • /
    • pp.217-240
    • /
    • 2017
  • The purpose of this study was to investigate the semantic network analysis to understand image contents and to examine the degree to which words, word clusters contributed to the formation of semantic map within image contents. For this research, from 1993 until 2016 the field of the image contents were collected for a total of 2,624 cases papers. The word appeared in Title analyzed the social network by using the R program of Big Data. The results were as follows: First, The field of image contents is based on researches related to 'image', 'media' and 'contents'. Second, there is a three-step flow ('education' -> 'media' -> 'contents') of research in the field of image contents. Third, researches related to 'broadcasting', 'digital', 'technology', and 'production' were continuously carried out. Finally, There were new research subjects for each regime.

Study on Research Trends in Airline Industry using Keyword Network Analysis: Focused on the Journal Articles in Scopus (키워드 네트워크를 이용한 항공관련 글로벌 연구동향 분석: 스코퍼스(Scopus)게재 논문을 중심으로)

  • Lee, Ju-Yang;Jang, Phil-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.169-178
    • /
    • 2017
  • In various research fields, it is important to identify the trends and meaningful patterns in large volumes of text data. We examined the research trends and patterns in global journal articles related to aviation and airlines from 1997 to 2016 using keyword network analysis. Keyword network models were constructed, and centrality (degree and betweenness) analysis was performed using 25,959 articles from the Scopus database. The results suggested that the recent research trends in aviation and airlines could be quantitatively described through keyword network analysis. The engineering and social science fields were the most relevant fields with keywords related to aviation and airlines. In addition, it was shown that betweenness centrality increased with the degree centrality of keywords. The results of this study could be applied to establish policies and suggest further research topics in the field of aviation and airlines based on empirical data.

Culture-Driven City Brand Communications via the Strategic Visuals

  • Kim, Seo Young;Hands, David
    • Review of Culture and Economy
    • /
    • v.21 no.2
    • /
    • pp.89-109
    • /
    • 2018
  • This paper aims to offer a conceptual framework in the context of culture-driven city branding through strategic design from a cross-disciplinary approach. The key findings identified the followings: Firstly, the phenomenon of culture-driven city brand creation and the use of design value of primary attractions. Secondly, the impact of the design contents of new media in supporting city brand creation. Lastly, the importance of image/text relationships through applying coding theory to enhance city brand communications.

A Study on Domestic Research Trends (2001-2020) of Forest Ecology Using Text Mining (텍스트마이닝을 활용한 국내 산림생태 분야 연구동향(2001-2020) 분석)

  • Lee, Jinkyu;Lee, Chang-Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.308-321
    • /
    • 2021
  • The purpose of this study was to analyze domestic research trends over the past 20 years and future direction of forest ecology using text mining. A total of 1,015 academic papers and keywords data related to forest ecology were collected by the "Research and Information Service Section" and analyzed using big data analysis programs, such as Textom and UCINET. From the results of word frequency and N-gram analyses, we found domestic studies on forest ecology rapidly increased since 2011. The most common research topic was "species diversity" over the past 20 years and "climate change" became a major topic since 2011. Based on CONCOR analysis, study subjects were grouped intoeight categories, such as "species diversity," "environmental policy," "climate change," "management," "plant taxonomy," "habitat suitability index," "vascular plants," and "recreation and welfare." Consequently, species diversity and climate change will remain important topics in the future and diversifying and expanding domestic research topics following global research trendsis necessary.

Analysis of Research Trends in Elementary Information Education in Korea using Topic Modeling (토픽 모델링을 활용한 국내 초등 정보교육 연구동향 분석)

  • Shim, Jaekwoun
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.347-354
    • /
    • 2021
  • As interest in artificial intelligence education for elementary school students has recently increased, it is necessary to analyze the existing elementary information education research from a macroscopic point of view to understand the current situation and to provide implications for subsequent research. This study analyzed Journal of The Korean Association of Information Education for the purpose of looking at the research trend of elementary information education in Korea. For the data of the study, all papers published until 2020 in the first issue of the journal were selected, and 11 research topics were derived by modeling topics. As a result of the study, topic T1, the highest proportion, was analyzed to account for about 38%, and keywords such as education, research, analysis, elementary school, and information were derived according to the order of contribution to topic T1. As a result of regression analysis according to the year of the topic, it was found that the research trend is changing to computing thinking, software education, and artificial intelligence education. The significance of this study is that text data related to elementary information education is objectively clustered.

An Analysis of the International Trends of Research on Artificial Intelligence in Education Using Topic Modeling (인공지능 활용 교육의 토픽모델링 분석을 통한 수학교육 연구 방향의 함의)

  • Noh, Jihwa;Ko, Ho Kyoung;Kim, Byeongsoo;Huh, Nan
    • Journal of the Korean School Mathematics Society
    • /
    • v.26 no.1
    • /
    • pp.1-19
    • /
    • 2023
  • This study analyzed the international trends of research concerning artificial intelligence in education by examining 352 papers recently published in the International Journal of Artificial Intelligence in Education(IJAIED) with the topic modeling method. The IJAIED is the official, SCOPUS-indexed journal of the International AIED Society. The analysis revealed that international AIED research trends could be categorized into eight topics with topics such as analyzing student behavior model in learning systems and designing feedback to student solutions being increased over time, whereas research focusing on data handling methods was decreased over time. Based on the findings implications and suggestions for the research and development of the applications of AIED were provided.

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.