• Title/Summary/Keyword: 텍스트 연구

Search Result 3,471, Processing Time 0.046 seconds

Emotion Recognition based on Short Text using Semantic Orientation Analysis (의미 지향성 분석을 통한 단문 텍스트 기반 감정인지)

  • Kim, Hyun-Woo;Lee, Sung-Young;Chung, Tae-Choong;Yoon, Suk-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.375-377
    • /
    • 2012
  • 스마트폰과 같은 모바일 기기가 발전함에 따라 SNS, 모바일 메신저, SMS와 같은 단문 기반 메시지는 자신의 감정을 가장 잘 표현하는 매체이다. 그럼에도 불구하고 기존 연구는 주로 장문의 텍스트로부터 긍정, 부정 분류나 문서의 성향을 분석하는 것에 그치는 경우가 많다. 의미지향(Semantic Orientation)방법은 검색엔진을 통해 감정 키워드와 인지하고자 하는 단어의 동시 빈출 정도를 PMI로 계산한 것으로 WordNet과 같은 의미 사전이 존재하지 않는 한국어의 특성에서 적용 가능한 방법이다. 본 논문에서는 의미 지향성 및 다른 텍스트 기반 감정 분류 기술에 대해 비교하고 이들을 활용하여 한국어로 구성된 단문 텍스트에서 효율적인 감정 분류 기법을 제안하고자 한다.

A Suggestion of Designing Program for Learning Transfer from Block-Based Programming Language to Text-Based Programming Language (블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어로의 학습 전이를 위한 프로그램 설계 방안)

  • Yi, Soyul;Lee, Youngjun
    • Proceedings of The KACE
    • /
    • 2018.01a
    • /
    • pp.29-31
    • /
    • 2018
  • 프로그래밍 언어 교육에서 일반적으로 학습자들은 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어 순서로 학습한다. 블록 기반 프로그래밍 언어나 텍스트 기반 프로그래밍 언어는 여타의 프로그래밍 언어들과 마찬가지로 프로그래밍의 기본 논리는 동일하나, 형태, 언어적 특성 및 사용 등에 대하여 다소 차이가 있다. 따라서 본 연구에서는 학습자들의 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어로의 유연한 학습 전이를 돕기 위한 프로그램의 설계 방안을 선행 조직자의 제시, 학습 콘텐츠의 체계화, 단순하고 직관적인 화면 구성으로 제시하였다.

  • PDF

SNS Analysis Related to Presidential Election Using Text Mining (텍스트 마이닝을 활용한 대선 관련 SNS 분석)

  • Kwon, Young-Woo;Jung, Deok-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.361-363
    • /
    • 2017
  • 최근 소셜 미디어의 이용률이 폭발적으로 증가함에 따라, 방대한 데이터가 네트워크로 쏟아져 나오고 있다. 이들 데이터는 기존의 정형 데이터뿐만 아니라 이미지, 동영상 등의 비정형 데이터가 있으며, 이들을 포괄하여 빅데이터라고 불린다. 이러한 빅데이터는 오피니언 마이닝, 테스트 마이닝 등의 기술적인 분석 기법과 빅데이터 요약 및 효과적인 표현방법에 대한 시각화 기법에 대하여 활발한 연구가 이루어지고 있다. 이 논문은 인기 있는 사회연결망 서비스인 Twitter의 트윗을 수집하고, 빅데이터 분석 기법인 텍스트 마이닝을 활용하여 2017년 대선에 대하여 분석하였다. 또한 분석된 자료의 효과적인 전달을 위해 워드 클라우드 진행하였다. 이 논문을 위하여 인기 있는 SNS인 Twitter의 최근 7일간 트윗(tweet)을 수집하고 분석하였다.

  • PDF

A theoretical study for effects about learning transfer between two more languages in programming education (프로그래밍 교육에서 2개 이상 프로그래밍 언어의 학습 전이 효과에 대한 이론적 고찰)

  • Yi, Soyul;Lee, Youngjun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.99-100
    • /
    • 2018
  • 컴퓨팅 사고력이 강조됨에 따라 우리 나라를 비롯한 세계 여러 나라에서는 프로그래밍 교육 등 컴퓨팅 관련 교육을 실시하고 있다. 일반적으로 프로그래밍 교육에서 초보 학습자에게는 블록 기반 프로그래밍 언어를 학습한 후 텍스트 기반 프로그래밍 언어를 학습하게 된다. 블록 기반 언어와 텍스트 기반 언어는 동일한 프로그래밍 논리를 함양하게 되지만, 다른 모든 언어들과 마찬가지로 언어 특성, 사용법, 형태 등 다소 차이가 있다. 따라서 본 논문에서는 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어의 학습 전이의 효과에 대해 이론적 고찰을 실시하였으며, 그 결과 대부분의 연구에서 긍정적 전이 효과를 입증하였음을 확인하였다.

  • PDF

Text Corpus Construction for Language Model (대어휘 음성인식 언어모델링을 위한 텍스트 코퍼스 구축)

  • Kim Jeong-se;Yoon Aesun;Kwon Hyuk-Chul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.155-158
    • /
    • 2002
  • 본 논문은 음성정보연구센터에서 추진하고 있는 대용량 텍스트 코퍼스 구축에 관하여 기술한다. 총 3 년 동안 약 3 억$\~$5 억 어절 수집을 목표로 하고 있으며, 주 목적은 대어휘 음성인식용 언어모델링을 위한 통계정보 추출용으로 활용할 예정이다. 1 차년도인 2002 년에 수집할 텍스트의 양은 약 6 천만 어절로 주요 일간지와 방송뉴스를 대상으로 하고 있다. 이 중 2 천만 어절은 띄어쓰기, 철자오류 수정 등을 수동으로 수행하고, 나머지 어절은 자동 검증 툴을 사용하여 오류를 수정하고자 한다. 본 논문에서는 공동 이용 가능한 텍스트 코퍼스의 구축 방안과 구축 시의 고려해야 할 사항들을 제시하고자 한다.

  • PDF

An Efficient Terminology Clustering Method Using Datamining Technique (데이타마이닝 기법을 이용한 효율적인 전문 용어 클러스터링)

  • 이정화;남상엽;문현정;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • 2000.11a
    • /
    • pp.210-215
    • /
    • 2000
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 일반적인 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 대량의 문서로부터 유용한 지식 정보를 찾기 위하여 의미적으로 연관된 전문 용어들끼리 클러스터링 하기 위한 방법을 제안하였다. 학술 논문을 대상으로 전문 용어를 추출하여 관련된 용어들끼리 클러스터를 구성하는 실험을 통하여 제안된 방법의 효율성을 보였다.

  • PDF

Sentimental Analysis using the Phoneme-level Embedding Model (음소 단위 임베딩 모형을 이용한 감성 분석)

  • Hyun, Kyeongseok;Choi, Woosung;Jung, Soon-young;Chung, Jaehwa
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1030-1032
    • /
    • 2019
  • 형태소 분석을 통하여 한국어 문장을 형태소 단위의 임베딩 및 학습 관련 연구가 되었으나 최근 비정형적인 텍스트 데이터의 증가에 따라 음소 단위의 임베딩을 통한 신경망 학습에 대한 요구가 높아지고 있다. 본 논문은 비정형적인 텍스트 감성 분석 성능 향상을 위해 음소 단위의 토큰을 생성하고 이를 CNN 모형을 기반으로 다차원 임베딩을 수행하고 감성분석을 위하여 양방향 순환신경망 모델을 사용하여 유튜브의 비정형 텍스트를 학습시켰다. 그 결과 텍스트의 긍정 부정 판별에 있어 90%의 정확도를 보였다.

Context Visualizing SMS Based on Decision Tree (의사결정트리 기반의 컨텍스트 시각화 SMS)

  • Gahng, Shinwook;Oh, Jehwan;Lee, Eunseok
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.515-518
    • /
    • 2009
  • 이동단말기가 보급이 확산됨에 따라 많은 사용자들이 이동단말기를 사용하고 필연적으로 많은 통신행동을 하고 있다. 특히 SMS 는 시간과 장소의 제한이 적어 사용자들의 통신행동 중 큰 비중을 차지하고 있다. SMS 통신행동에서 이모티콘의 사용이 많이 나타나고 있으며 이는 텍스트 기반의 의사소통의 한계를 극복하기 위한 방안으로 볼 수 있다. SMS 로부터 사용자의 감정을 추론하려는 기존의 연구가 있었지만 SMS 텍스트에 국한된다는 문제점이 있다. 본 논문에서는 최근 휴대폰, PDA, 스마트폰 등 이동단말기의 발전에 따라 통신행동 기록, 위치 정보와 같은 컨텍스트 정보를 수집하고 이용할 수 있음에 착안하여 SMS 텍스트와 함께 이동단말기의 컨텍스트 정보를 추론에 사용하였다. 의사결정트리를 이용하여 가용한 컨텍스트 정보로부터 추론한 정황 정보를 SMS 통신에서 사용하여 기존의 텍스트 기반의 의사소통의 한계를 극복할 수 있는 Visual SMS 를 제안한다. 사전에 정의한 훈련 데이터 집합을 통하여 의사결정트리를 생성하고 이를 기반으로 Visual SMS 를 구현, 시뮬레이션하여 추론 결과를 통해 그 기대효과를 확인한다.

Development of Matching Algorism for System Recognizing Text in the Construction Field (건설분야 텍스트 인식시스템의 매칭알고리즘 개발)

  • Song, Jong-Kwan;Jeong, Suk
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1525-1527
    • /
    • 2011
  • 현재 모든 분야에 IT산업이 융합되어 있지만 건설분야에서는 IT산업과의 융합이 많이 시도되고 있음에도 불구하고 타 산업에 비해 미비한 실정이다. 특히, 설계단계 공사비정보는 설계자의 의사결정을 지원하는 중요한 자료원임에도 불구하고 작성자에 따라 내역서에 쓰이는 작업항목 및 규격의 표현방식이 다르고 외래어 표음 및 오타, 그리고 부가정보 표기로 인해 단가축적의 시스템 및 DB화 가 이루어지지 않고 있다. 따라서 본 연구는 시공단계에서 발생된 실적단가를 설계단계에서 효과적으로 활용하기 위해 동일한 작업항목의 상이한 표현을 동일하게 인식할 수 있는 텍스트 인식시스템의 알고리즘을 제시한다. 텍스트 인식알고리즘에는 "유사어 및 단어테이블", "기준작업항목 테이블", "인식된 작업항목 테이블" 등으로 구성된 DB, 최소의미단위 단어를 비교 분절하기 위한 문자열 매칭 알고리즘, 그리고 동일하지 않은 텍스트를 인식하고 사용자의 의사결정을 지원하기 위한 유사도 계산으로 구성하였다.

Data Analysis Web Application Based on Text Mining (텍스트 마이닝 기반의 데이터 분석 웹 애플리케이션)

  • Gil, Wan-Je;Kim, Jae-Woong;Park, Koo-Rack;Lee, Yun-Yeol
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.103-104
    • /
    • 2021
  • 본 논문에서는 텍스트 마이닝 기반의 토픽 모델링 웹 애플리케이션 모델을 제안한다. 웹크롤링 기법을 활용하여 키워드를 입력하면 요약된 논문 정보를 파일로 저장할 수 있고 또한 키워드 빈도 분석과 토픽 모델링 등을 통해 연구 동향을 손쉽게 확인해볼 수 있는 웹 애플리케이션을 설계하고 구현하는 것을 목표로 한다. 제안 모델인 웹 애플리케이션을 통해 프로그래밍 언어와 데이터 분석 기법에 대한 지식이 부족하더라도 논문 수집과 저장, 텍스트 분석을 경험해볼 수 있다. 또한, 이러한 웹 시스템 개발은 기존의 html, css, java script와 같은 언어에 의존하지 않고 파이썬 라이브러리를 활용하였기 때문에 파이썬을 기반으로 데이터 분석과 머신러닝 교육을 수행할 경우 프로젝트 기반 수업 교육 과정으로 채택이 가능할 것으로 기대된다.

  • PDF