• Title/Summary/Keyword: 텍스트분석

Search Result 2,660, Processing Time 0.027 seconds

검색엔진 성능의 정량적 분석

  • 조석팔
    • The Journal of Information Technology
    • /
    • v.1 no.2
    • /
    • pp.55-63
    • /
    • 1998
  • 본 논문은 웹 상에서 하이퍼텍스트 문서의 정보 검색에 있어서 검색에 요구되는 질의어에 따른 검색 결과가 주제에 따른 관련성을 측정하며, 하이퍼텍스트 문서가 링크되는 문서 상호간의 유사성에 대하여 정량화를 시도함으로써 검색 엔진의 성능분석을 제시한다.

  • PDF

Discriminating User Attributes in Social Text based on Multi-Instance Learning (다중 인스턴스 학습 기반 사용자 프로파일 식별)

  • Song, Hyun-Je;Kim, A-Yeong;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.47-52
    • /
    • 2012
  • 본 논문에서는 소셜 네트워크 서비스에서 사용자가 작성한 텍스트로부터 그 사용자 프로파일 식별하는 문제를 다룬다. 프로파일 식별 관련 기존 연구에서는 개별 텍스트를 하나의 학습 단위로 간주하고 이를 기반으로 학습 모델을 구축한다. 프로파일을 식별하고자 하는 사용자의 텍스트들이 주어지면 각 텍스트마다 프로파일을 식별하고, 식별된 결과들을 합쳐 최종 프로파일로 선택한다. 하지만 SNS 특성상 프로파일을 식별하는 데에 영향을 끼치지 않는 텍스트들이 다수 존재하며, 기존 연구들은 이 텍스트들을 특별한 처리없이 학습 및 테스트에 사용함으로 인해 프로파일 식별 성능이 저하되는 문제점이 있다. 본 논문에서는 다중 인스턴스 학습(Multi-Instance Learning)을 기반으로 사용자 프로파일을 식별한다. 제안한 방법은 사용자가 작성한 텍스트 전체, 즉 텍스트 집합을 학습 단위로 간주하고 다중 인스턴스 학습 문제로 변환하여 프로파일을 식별한다. 다중 인스턴스 학습을 사용함으로써 프로파일 식별에 유의미한 텍스트들만이 고려되고 그 결과 프로파일 식별에 영향을 끼치지 않는 텍스트로부터의 성능 하락을 최소화할 수 있다. 실험을 통해 제안한 방법이 기존 학습 방법보다 성별, 나이, 결혼/연애 상태를 식별함에 있어서 더 좋은 성능을 보인다.

  • PDF

A Study on Research Trends of Graph-Based Text Representations for Text Mining (텍스트 마이닝을 위한 그래프 기반 텍스트 표현 모델의 연구 동향)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.37-47
    • /
    • 2013
  • Text Mining is a research area of retrieving high quality hidden information such as patterns, trends, or distributions through analyzing unformatted text. Basically, since text mining assumes an unstructured text, it needs to be represented as a simple text model for analyzing it. So far, most frequently used model is VSM(Vector Space Model), in which a text is represented as a bag of words. However, recently much researches tried to apply a graph-based text model for representing semantic relationships between words. In this paper, we survey research trends of graph-based text representation models for text mining. Additionally, we also discuss about future models of graph-based text mining.

The Design & Implementation of Korean Hypertext Automatic Translator (한글 하이퍼텍스트 자동변환시스팀의 설계 및 구현)

  • Ahn, B.I.;Kim, Jay;Kim, Y.W.
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.91-98
    • /
    • 1993
  • 하이퍼텍스트는 문서검색 전산화의 새로운 대안을 제시하고 있으나 저작에 많은 시간과 노력이 요구되는 단점이 있다. 본 연구에서는 기존의 한글문서를 하이퍼텍스트 문서로 자동 변환하는 변환시스팀을 설계, 구현하였다. 문서는 사용자가 제공한 부제목형식의 정규표현식(regular expression)으로부터 논리적 구조가 분석되며 문서분할, 형태소분석, 대표카드결정 및 링크생성의 과정을 거쳐 하이퍼텍스트 문서로 변환된다. 시험운용 결과 본 시스팀은 대량의 한글문서를 적은 노력으로 실용성있는 하이퍼텍스트 문서로 자동 변환할 수 있음을 입증하였다.

  • PDF

A Study on Lee Hae-Rang's Realism and Direction Standpoint - Focusing on The Performance Direction of Text "Hamlet" - (이해랑의 리얼리즘과 연출 관점에 대한 소고 - 텍스트 "햄릿" 공연 연출을 중심으로 -)

  • Ahn, Jang whan
    • (The) Research of the performance art and culture
    • /
    • no.22
    • /
    • pp.327-370
    • /
    • 2011
  • Shakespeare's text "Hamlet" was first introduced in Korea in the first part of 1920s by Hyeon Cheol via 『Gaebyeok』. Its performance of whole acts was realized in Kinema Theater in Daegu by the direction of Lee Hae-Rang (translated by Han Lo-Dan) in September, 1951, during the Korean War. Since then, a variety of performances were carried out by numberless performing artists and performing groups in the 1960s, 1970s, 1980s and 1990s. The purpose of this study was, among numberless performing artists and performances appeared in the history of performance of "Hamlet", to examine Lee Hae-rang's direction standpoint of "Hamlet", which has been one of the mainstays since the 1950s. For this, among many performances directed by Lee Hae-rang, the investigator referred to the performing scripts and performance criticisms for the opening performance of Drama Center in 1962 and the performances in HOAM Art Hall in 1985 and 1989, focusing on the text "Hamlet" performance in 1951. In the second chapter, the concept, standpoint and background of realism, the base of his theatrical activities in his lifetime, were examined. In the third chapter, before analyzing his direction standpoint for text "Hamlet", the traditional and modern concept of text was summarized and a variety of standpoints and viewpoints for the text were analyzed. And based on the above summary and analysis, his direction standpoint was analyzed and examined, thus presenting a clue for the discussion on the position of Shakespeare's text "Hamlet" directed by Lee Hae-rang in the Korean history of performance and its performance aesthetics.

Automatic Pronunciation Generation System Using Minimum Morpheme Information (최소 형태소 정보를 이용한 자동 발음열 생성 시스템)

  • 김선희;안주은;김순협
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.216-219
    • /
    • 2003
  • 본 논문은 최소한의 형태소 정보를 이용한 자동 발음열 생성 시스템을 제안한다 일반적으로 발음열 생성 시스템은 입력된 문장에 대하여 형태소 단위로 분석한 다음, 각 형태소와 형태소의 결함 관계를 고려한 음운 규칙을 적용함으로써 상응하는 발음열을 생성한다. 지금까지의 연구는 이러한 발음열 생성시의 형태소 분석에 관하여 그 범위에 관한 연구 없이, 가능한 최대한의 분석을 상정하고 있다. 본 논문은 한국어 음운현상을 체계적인 텍스트 분석을 통하여 모든 형태론적 음운론적인 환경에서 가능한 모든 음운현상을 분류하여 발음열 생성시에 실제로 필요한 형태소 분석의 범위를 규명하는 것을 그 목적으로 한다. 음운 현상을 분석하기 위해 사용한 텍스트 자료로는 어휘가 중복되지 않으면서도 많은 종류의 어휘가 수록된 5만 여 어휘의 연세한국어사전과 2200 여 개의 어미와 조사를 수록한 어미조사사전을 이용하였다. 이와 같이 텍스트를 분석한 결과, 음운현상은 규칙적인 음운 현상과 불규칙적인 음운현상으로 나뉘는데, 이 가운데 형태소 정보가 필요한 형태음운규칙으로는 두 가지가 있으며, 이러한 형태음운규칙을 위한 형태소 분석의 범위로는 세세한 분류를 필요로 하지 않는 최소한의 정보로 가능함을 보인다. 이러한 체계적인 분석을 기반으로 제안하는 자동 발음열 생성 시스템은 형태음운규칙과 예외규칙, 그리고 일반음운 규칙으로 구성된다. 본 시스템에 대한 성능 실험은 PBS 1637 어절과 ETRI 텍스트 DB 19만 여 어절을 이용하여 99.9%의 성능결과를 얻었다.

  • PDF

Methodology for Applying Text Mining Techniques to Analyzing Online Customer Reviews for Market Segmentation (온라인 고객리뷰 분석을 통한 시장세분화에 텍스트마이닝 기술을 적용하기 위한 방법론)

  • Kim, Keun-Hyung;Oh, Sung-Ryoel
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.272-284
    • /
    • 2009
  • In this paper, we proposed the methodology for analyzing online customer reviews by using text mining technologies. We introduced marketing segmentation into the methodology because it would be efficient and effective to analyze the online customers by grouping them into similar online customers that might include similar opinions and experiences of the customers. That is, the methodology uses categorization and information extraction functions among text mining technologies, matched up with the concept of market segmentation. In particular, the methodology also uses cross-tabulations analysis function which is a kind of traditional statistics analysis functions to derive rigorous results of the analysis. In order to confirm the validity of the methodology, we actually analyzed online customer reviews related with tourism by using the methodology.

A study on narrative text analysis from the perspective of information processing - focusing on four computational methodologies (정보처리 관점에서의 서사 텍스트 분석에 관한 연구 - 네 가지 전산적 방법론을 중심으로)

  • Kwon, Hochang
    • Trans-
    • /
    • v.13
    • /
    • pp.141-169
    • /
    • 2022
  • Analysis of narrative texts has been regarded as academically and practically important, and has been made from various perspectives and methods. In this paper, the computational narrative analysis methodology from the perspective of information processing was examined. From the point of view of information processing, the creation and acceptance of narrative is a bidirectional coding process mediated by narrative text, and narrative text can be said to be a multi-layered structured code. In this paper, four methodologies that share this point of view - character network analysis, text mining and sentiment analysis, continuity analysis of event composition, and knowledge analysis of narrative agents - were examined together with cases. Through this, the mechanism and possibility of computational methodology in narrative analysis were confirmed. In conclusion, the significance and side effects of computational narrative analysis were examined, and the necessity of designing a human-computer collaboration model based on the consilience of the humanities and science/technology was discussed. Based on this model, it was argued that aesthetically creative, ethically good, politically progressive, and cognitively sophisticated narratives could be made more effectively.

A Text Network Analysis of North Korean Library Journal, 『Reference Materials for Librarian』 (북한 도서관잡지 『도서관일군 참고자료』의 텍스트 네트워크 분석)

  • Lee, Seongsin;Kim, Hyunsook;Baek, Sumin;Yoon, Subin;Choi, Jae-Hwang
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.3
    • /
    • pp.169-191
    • /
    • 2022
  • The purpose of this study is to attempt a text network analysis for two years of 『Reference Materials for Librarian』 (2016-2017) published by the Library Operation Methodology Research Institute in North Korea. A text network analysis can measure how important a particular word by grasping the connectivity and relationship between words beyond a simple word frequency analysis, and it is also possible to interpret specific social phenomena and derive implications. Frequency, degree centrality, the betweenness centrality, community analysis of the collected words were calculated using NetMiner. As a result, the terms 'users', 'information services', 'information needs', 'information technology', 'social learning', 'computers', 'databases', 'information acquisition', 'information retrieval' and 'librarian' were appeared as important ones in understanding North Korean libraries.

A Bloom filter-based Sentiment-aware Web Crawling Algorithm (블룸 필터를 이용한 감성 웹 문서 크롤링 알고리즘)

  • Na, Chul-Won;On, Byung-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.69-74
    • /
    • 2018
  • 최근 빅 데이터와 인공지능의 발달과 함께 감성 분석에 대한 연구가 활발해지고 있다. 더불어 감성 분석을 위한 긍/부정 어휘가 풍부한 텍스트 문서들에 대한 수집의 필요성도 높아지고 있다. 본 논문은 긍/부정어휘가 풍부한 텍스트 문서들을 수집하는 기존의 수집 방법에 대한 문제점에 대하여 해결방안을 제시한다. 기존의 수집 방법으로 일단 모든 URL들을 저장하고 필터링 과정을 거쳐 긍/부정 어휘가 풍부한 텍스트 문서들을 수집하고자 한다면 불필요한 텍스트 문서 저장과 필터링 과정에서 메모리와 시간을 낭비하게 된다. 기존의 수집 방법에 블룸 필터라는 자료구조를 적용시켜 메모리와 시간을 낭비하게 되는 문제점을 해결하고자 한다.

  • PDF