정보통신기술의 발달로 전자상거래의 증가와 소비자들의 제품에 대한 경험과 지식의 공유가 활발하게 진행됨에 따라 소비자는 제품을 구매하기 위한 자료수집, 활용을 진행하고 있다. 따라서 기업은 다양한 기능들을 반영한 제품이 치열하게 경쟁하고 있는 현 시장에서 우위를 점하고자 소비자 리뷰를 분석하여 소비자의 정확한 소비자의 요구사항을 분석하여 제품기획 프로세스에 반영하고자 텍스트마이닝(Text Mining) 기술과 딥러닝(Deep Learning) 기술을 통한 연구가 이루어지고 있다. 본 논문의 기초자료가 되는 데이터셋은 포털사이트의 구매사이트와 오픈마켓 사이트의 소비자 리뷰를 웹크롤링하고 자연어처리하여 진행한다. 감성분석은 딥러닝기술 중 CNN(Convolutional Neural Network), LSTM(Long Short Term Memory) 조합의 모델을 구현한다. 이는 딥러닝을 이용한 제품기획 프로세스로 소비자 요구사항 반영, 경제적인 측면, 제품기획 시간단축 등 긍정적인 영향을 미칠 것으로 기대한다.
웹툰 시장의 성장에 따라, 웹툰을 주제로 다양한 연구가 진행되고 있다. 그러나 웹툰의 댓글을 분석한 연구는 특정 웹툰에 한정된 연구가 많아 일반적인 웹툰 독자의 댓글 특징을 보기에는 한계가 있다. 또한 웹툰의 흥행과 관련하여, 흥행에 성공한 웹툰과 그렇지 못한 웹툰의 독자 반응을 파악하는 연구는 부족한 실정이다. 따라서 본 연구는 웹툰의 흥행에 주목하여, 흥행의 지표를 웹툰 플랫폼 정식연재로 판단하고, 정식연재가 된 웹툰과 되지 못한 웹툰의 댓글을 비교 분석하였다. 분석 결과, 정식연재가 된 웹툰은 긍정적인 감상평 외에 2차적 저작물을 언급하고 등장인물의 이름 언급이 높았으나 정식연재가 되지 못한 웹툰은 부정적인 감상평 외에, 웹툰 요소에 대한 부정적 언급과 웹툰 장르와 다른 장르의 언급이 나타나 웹툰에 대한 독자의 불만족 요인을 파악할 수 있었다.
최근 빅데이터 분석을 위해 웹 크롤러를 이용한 텍스트 수집이 빈번하게 이루어지고 있다. 하지만 수많은 태그와 텍스트로 복잡하게 구성된 웹 페이지에서 필요한 텍스트만을 수집하기 위해서는 웹 크롤러에 빅데이터 분석에 필요한 본문이 포함된 HTML태그와 스타일 속성을 명시해야 하는 번거로움이 있다. 본 논문에서는 HTML태그와 스타일 속성을 명시하지 않고 웹 페이지에서 출현하는 텍스트의 빈도를 이용하여 본문을 추출하는 방법을 제안하였다. 제안한 방법에서는 수집된 모든 웹 페이지의 DOM 트리에서 텍스트를 추출하여 텍스트의 출현 빈도를 분석한 후, 출현 빈도가 높은 텍스트를 제외시킴으로써 본문을 추출하였으며, 본 연구에서 제안한 방법과 기존 방법의 정확도 비교를 통해서 본 연구에서 제안한 방법의 우수성을 검증하였다.
본 연구는 중앙정부와 지방정부 간 지하공간에 관한 주요 이슈를 파악하기 위해 소셜미디어 데이터를 활용하였다. 또한 이를 빅데이터 분석방법론을 통해 분석하였다. 연구방법론으로 사회네트워크분석의 키워드 네트워크 방법을 사용하였고 트위터를 통해 얻어진 텍스트 데이터를 텍스트마이닝 기법을 사용하여 분석하였다. 특히 지하공간은 2014년 잠실 싱크홀 사건 이후 사회적으로 관심을 가지고 있는 이슈로서 키워드 네트워크 분석을 통해 계량적으로 분석을 시도하였다. 네트워크의 속성을 파악하기 위해 중심성 지수, 그룹밀도 분석을 통해 지하공간과 관련된 이슈를 파악하였다. 이러한 분석 결과 중앙정부의 정책 관련 항목은 지자체 정책과 관련이 있음을 확인하였다. 중앙정부는 예방차원에서 특별법을 바탕으로 예방체계를 구축하여 지자체가 지하공간에 관련된 문제에 대해 대응 관리하도록 법에 근거한 예방체계를 구축하고 있다. 이와 같은 결과는 앞으로 중앙 정부가 연구관련 분야를 강화함으로써 지하공간 관련 안전대책을 구축하는 데 법과 기술이 서로 협력하여 발전해야 함을 시사해 준다.
현재 우리나라 대학생의 수는 전문 대학생 수를 포함하여 약 300만명이다. 그만큼 우리나라는 대학교 진학률이 높고 대학생 수가 많다. 하지만 많은 학생들은 수강신청을 할 때 강의에 대한 충분한 사전 지식없이 수강신청을 하여 본인이 생각했던 강의와 다른 강의를 수강 하는 학생들이 적지 않다. 이에 본 논문은 수강을 한 학생들의 수강평가를 대상으로 텍스트마이닝과 오피니언 마이닝을 적용하여, 키워드를 추출하고, 그것의 분석을 통해 본인에게 맞는 강의를 파악할 수 있는 시스템을 제안하고자 한다.
텍스트마이닝은 비정형, 대용량의 텍스트 자료로부터 유의미한 정보를 추출하는 빅데이터 분석의 대표적인 방법이다. 트위터와 같은 SNS는 1초에서 수십만건의 데이터를 생성해내며 대중들의 의견이나 생각 등을 즉각적이며 직접적으로 보여주는 1인 미디어로의 역할을 하고 있다. 기성 미디어인 언론은 정보전달, 사회비판, 여론형성의 기능을 수행하고 있다. 본 논문에서는 미디어로의 SNS와 언론을 비교해 보고자 한다. 이를 위해 2019년 하반기 국내의 이슈 중의 하나인 "한일군사정보보호협정(GSOMIA) 종료"에 대한 SNS의 반응과 언론의 반응을 비교 분석한다. 수집된 데이터는 총 201,728개의 트윗과 20,698개의 신문 기사를 대상으로 감성분석, 연관분석, 군집분석을 수행하였다. 그 결과로 SNS의 경우 이슈에 대해 긍정적 반응이 높았고 언론의 경우는 부정적 반응이 높았다. 연관검색의 경우는 SNS의 경우 "파기, 결정, 우리" 등 국내적 이슈에 대한 지지가 높았고 언론의 경우 "실망, 유감, 우려" 등으로 대외적 이슈에 대한 부정적 견해를 보여주는 차이를 보여주었다. SNS는 정보전달의 기능보다는 사회 비판 및 여론의 추이를 살피거나 형성하는데 언론보다 빠르고 강하게 나타내고 있어 언론이 대중의 인식을 반영해주는 역할을 보완할 수 있다.
인공지능은 현재의 컴퓨팅시스템 성능한계를 극복하고 컴퓨팅 환경을 발전시켜 다양한 분야의 기술 발전을 위한 핵심 기술로서 주목받고 있다. 이에 세계 국가들은 물론이고, 국내에서도 인터넷 기업을 중심으로 사업화 기술개발이 이루어지고 있다. 정부 역시 인공지능 기술 개발을 위해 다양한 지원을 아끼지 않고 있으며, 이에 따른 기술의 발전으로 인공지능에 대한 관심이 증폭되고 있다. 그러나 긍정적인 시각과 부정적인 시각이 공존하고 있는 인공지능 분야에서 사람들의 의견을 분석하는 연구는 매우 부족한 실정이다. 이에 따라 본 연구에서는 텍스트 마이닝 기법을 활용하여 SNS (Social Networking Service)에서 수집된 인공지능에 대한 사람들의 의견 데이터를 연도별로 비교 분석하여 수집된 데이터에 대한 긍정, 부정 여부와 함께 연도별 키워드를 확인하였다. 분석 결과, 국내 인공지능 분야의 연도별 키워드를 확인하였으며, 시간의 흐름에 따라 인공지능에 대해 부정적인 의견이 증가하는 것을 확인하였다. 그리고 이러한 비교분석 결과를 기반으로 인공지능 분야의 흐름에 대해 예측할 수 있었다.
본 연구는 우리나라 데이터 관련 정책사업에 대한 텍스트 정보를 기반으로 네트워크 군집 분석을 통해 유사한 사업들을 분류하고 유형화하였다. 이를 위해 2022년에 우리나라에서 추진된 데이터 관련 재정사업 설명자료를 수집하고 사업 내용으로부터 키워드를 추출, TF-IDF로 각 사업 간 유사도를 도출하였으며, 이를 기반으로 정책사업 네트워크를 구축하였다. 이후 정책사업 네트워크의 구조적 특징을 분석하고, 네트워크 군집 분석을 통해 유사한 정책사업들을 군집화하여 유형화 하였다. 총 97개의 사업을 분석한 결과, 7개의 주요 군집이 식별되었으며, 이를 통해 비슷한 주제나 목표를 가진 사업들이 응용 분야 혹은 데이터가 활용되는 서비스 관점에서 유형화가 이루어진 것을 확인하였다. 본 연구의 결과는 현재 우리나라 데이터 관련 정책사업의 현황을 보여줌과 동시에 향후 국가데이터전략 수립 및 사업 기획에 있어서 전략적 접근을 위한 정책적 시사점을 제공하며 증거기반 정책 확립에 기여한다.
본 논문은 비교마이닝(comparison mining)의 일환인 비교 문장 유형 자동 분류에 관하여 연구한다. 비교마이닝은 텍스트 마이닝의 한 분야로서 대용량의 텍스트를 대상으로 비교 관계를 분석하며, 크게 세 단계의 과정을 거치게 되는데 첫 번째 단계는 대용량의 문서에서 비교 문장만을 식별 후 추출해 내는 과정이고, 두 번째 단계는 추출된 비교 문장들을 비교 유형별로 분류하는 과정이며, 앞의 두 선행 과정이 끝나면 유형별로 비교 속성을 추출 및 비교 관계를 분석하는 세 번째 단계를 수행하게 된다. 본 연구에서는 변환 기반 학습(transformation-based learning) 기법을 이용하여 비교 문장들을 일곱 가지의 유형으로 자동 분류하는 두 번째 과제를 수행한다. 자연어 처리 분야 여러 부문에서 사용되고 있는 변환기반 학습은 오류를 감소시키는 최적의 규칙을 자동으로 생성하여 정답을 찾아가는 규칙 기반 학습 방법이다. 웹상의 다양한 도메인에서 추출된 비교 문장들을 대상으로 유형 분류를 수행한 결과 정확도 80.01%의 성능으로 일곱 가지 유형을 분류할 수 있었다.
본 연구에서는 과학기술 텍스트 마이닝을 이용하여 국방 유망기술을 식별하는 방법론을 제안하고 있다. 그동안 국가차원에서 NTIS와 DTiMS를 포함한 과학기술 관련 정보체계를 구축하는데 많은 노력을 기울여왔는데 과학기술 정보체계는 연구자와 정책입안자, 또는 실무자들이 기술적 변화를 분석하고 효율적인 업무진행, 지식공유, 전략개발, 또는 조직의 경쟁력을 높이기 위한 정책개발에 활용성이 크다. 본 연구에서는 INSPEC 데이터베이스에 과학기술 텍스트마이닝 기법을 적용하여 미래 무인전투기술에 대한 지식네트워크 구조와 국방 유망기술을 식별하는 과정을 예시함으로써 구축된 과학기술 정보체계를 이용한 미래 유망기술의 식별 방법론을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.