• 제목/요약/키워드: 텍스트마이닝분석

검색결과 1,003건 처리시간 0.027초

CNN-LSTM 모델 기반의 감성분석을 이용한 상품기획 모델 (Product Planning using Sentiment Analysis Technique Based on CNN-LSTM Model)

  • 김도연;정진영;박원철;박구락
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.427-428
    • /
    • 2021
  • 정보통신기술의 발달로 전자상거래의 증가와 소비자들의 제품에 대한 경험과 지식의 공유가 활발하게 진행됨에 따라 소비자는 제품을 구매하기 위한 자료수집, 활용을 진행하고 있다. 따라서 기업은 다양한 기능들을 반영한 제품이 치열하게 경쟁하고 있는 현 시장에서 우위를 점하고자 소비자 리뷰를 분석하여 소비자의 정확한 소비자의 요구사항을 분석하여 제품기획 프로세스에 반영하고자 텍스트마이닝(Text Mining) 기술과 딥러닝(Deep Learning) 기술을 통한 연구가 이루어지고 있다. 본 논문의 기초자료가 되는 데이터셋은 포털사이트의 구매사이트와 오픈마켓 사이트의 소비자 리뷰를 웹크롤링하고 자연어처리하여 진행한다. 감성분석은 딥러닝기술 중 CNN(Convolutional Neural Network), LSTM(Long Short Term Memory) 조합의 모델을 구현한다. 이는 딥러닝을 이용한 제품기획 프로세스로 소비자 요구사항 반영, 경제적인 측면, 제품기획 시간단축 등 긍정적인 영향을 미칠 것으로 기대한다.

  • PDF

텍스트 마이닝 기법을 활용한 웹툰 댓글 분석 : 네이버 베스트 도전 웹툰을 중심으로 (A Study of Webtoon comments using Text mining : Focusing on Naver's Best Challenge Webtoon)

  • 이윤주;소현정;곽기영;안현철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.219-222
    • /
    • 2020
  • 웹툰 시장의 성장에 따라, 웹툰을 주제로 다양한 연구가 진행되고 있다. 그러나 웹툰의 댓글을 분석한 연구는 특정 웹툰에 한정된 연구가 많아 일반적인 웹툰 독자의 댓글 특징을 보기에는 한계가 있다. 또한 웹툰의 흥행과 관련하여, 흥행에 성공한 웹툰과 그렇지 못한 웹툰의 독자 반응을 파악하는 연구는 부족한 실정이다. 따라서 본 연구는 웹툰의 흥행에 주목하여, 흥행의 지표를 웹툰 플랫폼 정식연재로 판단하고, 정식연재가 된 웹툰과 되지 못한 웹툰의 댓글을 비교 분석하였다. 분석 결과, 정식연재가 된 웹툰은 긍정적인 감상평 외에 2차적 저작물을 언급하고 등장인물의 이름 언급이 높았으나 정식연재가 되지 못한 웹툰은 부정적인 감상평 외에, 웹툰 요소에 대한 부정적 언급과 웹툰 장르와 다른 장르의 언급이 나타나 웹툰에 대한 독자의 불만족 요인을 파악할 수 있었다.

  • PDF

빈도 분석을 이용한 HTML 텍스트 추출 (HTML Text Extraction Using Frequency Analysis)

  • 김진환;김은경
    • 한국정보통신학회논문지
    • /
    • 제25권9호
    • /
    • pp.1135-1143
    • /
    • 2021
  • 최근 빅데이터 분석을 위해 웹 크롤러를 이용한 텍스트 수집이 빈번하게 이루어지고 있다. 하지만 수많은 태그와 텍스트로 복잡하게 구성된 웹 페이지에서 필요한 텍스트만을 수집하기 위해서는 웹 크롤러에 빅데이터 분석에 필요한 본문이 포함된 HTML태그와 스타일 속성을 명시해야 하는 번거로움이 있다. 본 논문에서는 HTML태그와 스타일 속성을 명시하지 않고 웹 페이지에서 출현하는 텍스트의 빈도를 이용하여 본문을 추출하는 방법을 제안하였다. 제안한 방법에서는 수집된 모든 웹 페이지의 DOM 트리에서 텍스트를 추출하여 텍스트의 출현 빈도를 분석한 후, 출현 빈도가 높은 텍스트를 제외시킴으로써 본문을 추출하였으며, 본 연구에서 제안한 방법과 기존 방법의 정확도 비교를 통해서 본 연구에서 제안한 방법의 우수성을 검증하였다.

소셜미디어 데이터를 활용한 중앙정부와 지방정부 간 지하공간의 주요 이슈 고찰 (Analysis of Issues on Underground Space between Central and Local Governments Utilizing Social Media Data)

  • 최해옥;백성준
    • 지적과 국토정보
    • /
    • 제46권1호
    • /
    • pp.75-86
    • /
    • 2016
  • 본 연구는 중앙정부와 지방정부 간 지하공간에 관한 주요 이슈를 파악하기 위해 소셜미디어 데이터를 활용하였다. 또한 이를 빅데이터 분석방법론을 통해 분석하였다. 연구방법론으로 사회네트워크분석의 키워드 네트워크 방법을 사용하였고 트위터를 통해 얻어진 텍스트 데이터를 텍스트마이닝 기법을 사용하여 분석하였다. 특히 지하공간은 2014년 잠실 싱크홀 사건 이후 사회적으로 관심을 가지고 있는 이슈로서 키워드 네트워크 분석을 통해 계량적으로 분석을 시도하였다. 네트워크의 속성을 파악하기 위해 중심성 지수, 그룹밀도 분석을 통해 지하공간과 관련된 이슈를 파악하였다. 이러한 분석 결과 중앙정부의 정책 관련 항목은 지자체 정책과 관련이 있음을 확인하였다. 중앙정부는 예방차원에서 특별법을 바탕으로 예방체계를 구축하여 지자체가 지하공간에 관련된 문제에 대해 대응 관리하도록 법에 근거한 예방체계를 구축하고 있다. 이와 같은 결과는 앞으로 중앙 정부가 연구관련 분야를 강화함으로써 지하공간 관련 안전대책을 구축하는 데 법과 기술이 서로 협력하여 발전해야 함을 시사해 준다.

오피니언 마이닝을 통한 수강평가 분석 (Analyzing course evaluation through opinion mining)

  • 최선창;윤재열;임지연;김응모
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.195-197
    • /
    • 2012
  • 현재 우리나라 대학생의 수는 전문 대학생 수를 포함하여 약 300만명이다. 그만큼 우리나라는 대학교 진학률이 높고 대학생 수가 많다. 하지만 많은 학생들은 수강신청을 할 때 강의에 대한 충분한 사전 지식없이 수강신청을 하여 본인이 생각했던 강의와 다른 강의를 수강 하는 학생들이 적지 않다. 이에 본 논문은 수강을 한 학생들의 수강평가를 대상으로 텍스트마이닝과 오피니언 마이닝을 적용하여, 키워드를 추출하고, 그것의 분석을 통해 본인에게 맞는 강의를 파악할 수 있는 시스템을 제안하고자 한다.

텍스트 마이닝을 이용한 SNS와 언론의 이슈에 대한 반응 비교 -"한일군사정보보호협정(GSOMIA) 종료"를 중심으로- (Comparison of responses to issues in SNS and Traditional Media using Text Mining -Focusing on the Termination of Korea-Japan General Security of Military Information Agreement(GSOMIA)-)

  • 이수련;최은정
    • 디지털융복합연구
    • /
    • 제18권2호
    • /
    • pp.277-284
    • /
    • 2020
  • 텍스트마이닝은 비정형, 대용량의 텍스트 자료로부터 유의미한 정보를 추출하는 빅데이터 분석의 대표적인 방법이다. 트위터와 같은 SNS는 1초에서 수십만건의 데이터를 생성해내며 대중들의 의견이나 생각 등을 즉각적이며 직접적으로 보여주는 1인 미디어로의 역할을 하고 있다. 기성 미디어인 언론은 정보전달, 사회비판, 여론형성의 기능을 수행하고 있다. 본 논문에서는 미디어로의 SNS와 언론을 비교해 보고자 한다. 이를 위해 2019년 하반기 국내의 이슈 중의 하나인 "한일군사정보보호협정(GSOMIA) 종료"에 대한 SNS의 반응과 언론의 반응을 비교 분석한다. 수집된 데이터는 총 201,728개의 트윗과 20,698개의 신문 기사를 대상으로 감성분석, 연관분석, 군집분석을 수행하였다. 그 결과로 SNS의 경우 이슈에 대해 긍정적 반응이 높았고 언론의 경우는 부정적 반응이 높았다. 연관검색의 경우는 SNS의 경우 "파기, 결정, 우리" 등 국내적 이슈에 대한 지지가 높았고 언론의 경우 "실망, 유감, 우려" 등으로 대외적 이슈에 대한 부정적 견해를 보여주는 차이를 보여주었다. SNS는 정보전달의 기능보다는 사회 비판 및 여론의 추이를 살피거나 형성하는데 언론보다 빠르고 강하게 나타내고 있어 언론이 대중의 인식을 반영해주는 역할을 보완할 수 있다.

SNS 데이터 분석을 기반으로 인공지능에 대한 인식 변화 비교 분석 (A SNS Data-driven Comparative Analysis on Changes of Attitudes toward Artificial Intelligence)

  • 윤유동;양영욱;임희석
    • 디지털융복합연구
    • /
    • 제14권12호
    • /
    • pp.173-182
    • /
    • 2016
  • 인공지능은 현재의 컴퓨팅시스템 성능한계를 극복하고 컴퓨팅 환경을 발전시켜 다양한 분야의 기술 발전을 위한 핵심 기술로서 주목받고 있다. 이에 세계 국가들은 물론이고, 국내에서도 인터넷 기업을 중심으로 사업화 기술개발이 이루어지고 있다. 정부 역시 인공지능 기술 개발을 위해 다양한 지원을 아끼지 않고 있으며, 이에 따른 기술의 발전으로 인공지능에 대한 관심이 증폭되고 있다. 그러나 긍정적인 시각과 부정적인 시각이 공존하고 있는 인공지능 분야에서 사람들의 의견을 분석하는 연구는 매우 부족한 실정이다. 이에 따라 본 연구에서는 텍스트 마이닝 기법을 활용하여 SNS (Social Networking Service)에서 수집된 인공지능에 대한 사람들의 의견 데이터를 연도별로 비교 분석하여 수집된 데이터에 대한 긍정, 부정 여부와 함께 연도별 키워드를 확인하였다. 분석 결과, 국내 인공지능 분야의 연도별 키워드를 확인하였으며, 시간의 흐름에 따라 인공지능에 대해 부정적인 의견이 증가하는 것을 확인하였다. 그리고 이러한 비교분석 결과를 기반으로 인공지능 분야의 흐름에 대해 예측할 수 있었다.

텍스트 마이닝과 네트워크 군집 분석을 활용한 한국의 데이터 관련 정책사업 분석 (Analyzing data-related policy programs in Korea using text mining and network cluster analysis)

  • 최성준;신기윤;오윤환
    • 한국산업정보학회논문지
    • /
    • 제28권6호
    • /
    • pp.63-81
    • /
    • 2023
  • 본 연구는 우리나라 데이터 관련 정책사업에 대한 텍스트 정보를 기반으로 네트워크 군집 분석을 통해 유사한 사업들을 분류하고 유형화하였다. 이를 위해 2022년에 우리나라에서 추진된 데이터 관련 재정사업 설명자료를 수집하고 사업 내용으로부터 키워드를 추출, TF-IDF로 각 사업 간 유사도를 도출하였으며, 이를 기반으로 정책사업 네트워크를 구축하였다. 이후 정책사업 네트워크의 구조적 특징을 분석하고, 네트워크 군집 분석을 통해 유사한 정책사업들을 군집화하여 유형화 하였다. 총 97개의 사업을 분석한 결과, 7개의 주요 군집이 식별되었으며, 이를 통해 비슷한 주제나 목표를 가진 사업들이 응용 분야 혹은 데이터가 활용되는 서비스 관점에서 유형화가 이루어진 것을 확인하였다. 본 연구의 결과는 현재 우리나라 데이터 관련 정책사업의 현황을 보여줌과 동시에 향후 국가데이터전략 수립 및 사업 기획에 있어서 전략적 접근을 위한 정책적 시사점을 제공하며 증거기반 정책 확립에 기여한다.

한국어 비교 문장 유형 분류를 위한 변환 기반 학습 기법 (Transformation-based Learning for Korean Comparative Sentence Classification)

  • 양선;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권2호
    • /
    • pp.155-160
    • /
    • 2010
  • 본 논문은 비교마이닝(comparison mining)의 일환인 비교 문장 유형 자동 분류에 관하여 연구한다. 비교마이닝은 텍스트 마이닝의 한 분야로서 대용량의 텍스트를 대상으로 비교 관계를 분석하며, 크게 세 단계의 과정을 거치게 되는데 첫 번째 단계는 대용량의 문서에서 비교 문장만을 식별 후 추출해 내는 과정이고, 두 번째 단계는 추출된 비교 문장들을 비교 유형별로 분류하는 과정이며, 앞의 두 선행 과정이 끝나면 유형별로 비교 속성을 추출 및 비교 관계를 분석하는 세 번째 단계를 수행하게 된다. 본 연구에서는 변환 기반 학습(transformation-based learning) 기법을 이용하여 비교 문장들을 일곱 가지의 유형으로 자동 분류하는 두 번째 과제를 수행한다. 자연어 처리 분야 여러 부문에서 사용되고 있는 변환기반 학습은 오류를 감소시키는 최적의 규칙을 자동으로 생성하여 정답을 찾아가는 규칙 기반 학습 방법이다. 웹상의 다양한 도메인에서 추출된 비교 문장들을 대상으로 유형 분류를 수행한 결과 정확도 80.01%의 성능으로 일곱 가지 유형을 분류할 수 있었다.

S&T Text Mining을 이용한 국방 유망기술 식별에 관한 연구 (A Study on the Identifying Emerging Defense Technology using S&T Text Mining)

  • 이태봉;이춘주
    • 한국국방경영분석학회지
    • /
    • 제36권1호
    • /
    • pp.39-49
    • /
    • 2010
  • 본 연구에서는 과학기술 텍스트 마이닝을 이용하여 국방 유망기술을 식별하는 방법론을 제안하고 있다. 그동안 국가차원에서 NTIS와 DTiMS를 포함한 과학기술 관련 정보체계를 구축하는데 많은 노력을 기울여왔는데 과학기술 정보체계는 연구자와 정책입안자, 또는 실무자들이 기술적 변화를 분석하고 효율적인 업무진행, 지식공유, 전략개발, 또는 조직의 경쟁력을 높이기 위한 정책개발에 활용성이 크다. 본 연구에서는 INSPEC 데이터베이스에 과학기술 텍스트마이닝 기법을 적용하여 미래 무인전투기술에 대한 지식네트워크 구조와 국방 유망기술을 식별하는 과정을 예시함으로써 구축된 과학기술 정보체계를 이용한 미래 유망기술의 식별 방법론을 제시하였다.