• 제목/요약/키워드: 텍스트랭크 알고리즘

검색결과 4건 처리시간 0.017초

단어 간 의미적 연관성을 고려한 어휘 체인 기반의 개선된 자동 문서요약 방법 (An Improved Automatic Text Summarization Based on Lexical Chaining Using Semantical Word Relatedness)

  • 차준석;김정인;김판구
    • 스마트미디어저널
    • /
    • 제6권1호
    • /
    • pp.22-29
    • /
    • 2017
  • 최근 스마트 디바이스의 급속한 발달과 보급으로 인하여 인터넷 웹상에서 등장하는 문서의 데이터는 하루가 다르게 증가 하고 있다. 이러한 정보의 증가로 인터넷 웹상에서는 대량의 문서가 증가하여 사용자가 해당 문서의 데이터를 이해하는데, 어려움을 겪고 있다. 그렇기 때문에 자동 문서 요약 분야에서 문서를 효율적으로 요악하기 위해 다양한 연구가 진행 되고 있다. 효율적으로 문서를 요약하기 위해 본 논문에서는 텍스트랭크 알고리즘을 이용한다. 텍스트랭크 알고리즘은 문장 또는 키워드를 그래프로 표현하며, 단어와 문장 간의 의미적 연관성을 파악하기 위해 그래프의 정점과 간선을 이용하여 문장의 중요도를 파악한다. 문장의 상위 키워드를 추출 하고 상위 키워드를 기반으로 중요 문장 추출 과정을 거친다. 중요 문장 추출 과정을 거치기 위해 단어 그룹화 과정을 거친다. 단어그룹화는 특정 가중치 척도를 이용하여 가중치 점수가 높은 문장을 선별하여 선별된 문장들을 기반으로 중요 문장을 중요 문장을 추출하여, 문서를 요약을 하게 된다. 이를 통해 기존에 연구 되었던 문서요약 방법보다 향상된 성능을 보였으며, 더욱 효율적으로 문서를 요약할 수 있음을 증명하였다.

문장 수반 관계를 고려한 문서 요약 (Document Summarization Considering Entailment Relation between Sentences)

  • 권영대;김누리;이지형
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.179-185
    • /
    • 2017
  • 문서의 요약은 요약문 내의 문장들끼리 서로 연관성 있게 이어져야 하고 하나의 짜임새 있는 글이 되어야 한다. 본 논문에서는 위의 목적을 달성하기 위해 문장 간의 유사도와 수반 관계(Entailment)를 고려하여 문서 내에서 연관성이 크고 의미, 개념적인 연결성이 높은 문장들을 추출할 수 있도록 하였다. 본 논문에서는 Recurrent Neural Network 기반의 문장 관계 추론 모델과 그래프 기반의 랭킹(Graph-based ranking) 알고리즘을 혼합하여 단일 문서 추출요약 작업에 적용한 새로운 알고리즘인 TextRank-NLI를 제안한다. 새로운 알고리즘의 성능을 평가하기 위해 기존의 문서요약 알고리즘인 TextRank와 동일한 데이터 셋을 사용하여 성능을 비교 분석하였으며 기존의 알고리즘보다 약 2.3% 더 나은 성능을 보이는 것을 확인하였다.

분야연상어의 수집과 추출 알고리즘 (Collection and Extraction Algorithm of Field-Associated Terms)

  • 이상곤;이완권
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.347-358
    • /
    • 2003
  • 인간은 문서전체를 읽지 않고 대표적인 단어를 보는 것만으로 정치나 스포츠 등의 분야를 정확히 인지할 수 있다. 문서전체를 대상으로 하지 않고 부분텍스트에서 출현하는 소수의 단어정보에서 문서의 분야를 정확히 결정하기 위해 분야연상어의 구축은 중요한 연구과제이다. 인간이 미리 분야체계를 정의하고, 각 분야에 해당하는 문서를 인터넷이나 서적을 통해 수집한다. 본 논문은 수집문서의 분야를 정확히 지시하는 분야연상어를 수집하는 방법을 제안한다. 문서의 분야결정 시점을 고려하여 분야연상어의 수준과 안정성 랭크에 대하여 논의한다. 학습데이터에서 분야연상어 후보의 각 수준을 자동으로 결정하고, 컴퓨터가 제시하는 분야연상어의 수준, 안정성 랭크, 집중률, 빈도정보를 이용하여 단일 분야연상어를 수집하는 방법을 제안한다.

질의 어휘와의 근접도를 반영한 단어 그래프 기반 질의 확장 (Query Expansion based on Word Graph using Term Proximity)

  • 장계훈;이경순
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.37-42
    • /
    • 2012
  • 잠정적 적합성 피드백모델은 초기 검색 결과의 상위에 순위화된 문서를 적합 문서라 가정하고, 상위문서에서 빈도가 높은 어휘를 확장 질의로 선택한다. 빈도수를 이용한 질의 확장 방법의 단점은 문서 안에서 포함된 어휘들 사이의 근접도에 상관없이 각 어휘를 독립적으로 생각한다는 것이다. 본 논문에서는 어휘빈도를 이용한 질의 확장을 대체할 수 있는 어휘 근접도를 반영한 단어 그래프 기반 질의 확장을 제안한다. 질의 어휘 주변에 발생한 어휘들을 노드로 표현하고, 어휘들 사이의 근접도를 에지의 가중치로 하여 단어 그래프를 표현한다. 반복된 연산을 통해 확장 질의를 선택함으로써 성능을 향상시키는 기법을 제안한다. 유효성 검증을 위해 웹문서 집합인 TREC WT10g 테스트 컬렉션에 대한 실험에서 언어모델 보다 MAP 평가 기준에서 6.4% 향상됨을 보였다.