• 제목/요약/키워드: 텍스트기반 분류

검색결과 354건 처리시간 0.023초

BERT 기반 혐오성 텍스트 필터링 시스템 - 대학 청원 시스템을 중심으로 (BERT-based Hateful Text Filtering System - Focused on University Petition System)

  • 문태진;배현빈;이현수;박상욱;김영종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.714-715
    • /
    • 2023
  • 최근들어 청원 시스템은 사람들의 다양한 의견을 반영하고 대응하기 위한 중요한 수단으로 부상하고 있다. 그러나 많은 양의 청원 글들을 수작업으로 분류하는 것은 매우 시간이 많이 소요되며, 인적 오류가 발생할 수 있는 문제점이 존재한다. 이를 해결하기 위해 자연어처리(NLP) 기술을 활용한 청원 분류 시스템을 개발하는 것이 필요하다. 본 연구에서는 BERT(Bidirectional Encoder Representations from Transformers)[1]를 기반으로 한 텍스트 필터링 시스템을 제안한다. BERT 는 최근 자연어 분류 분야에서 상위 성능을 보이는 모델로, 이를 활용하여 청원 글을 분류하고 분류된 결과를 이용해 해당 글의 노출여부를 결정한다. 본 논문에서는 BERT 모델의 이론적 배경과 구조, 그리고 미세 조정 학습 방법을 소개하고, 이를 활용하여 청원 분류 시스템을 구현하는 방법을 제시한다. 우리가 제안하는 BERT 기반의 텍스트 필터링 시스템은 청원 글 분류를 자동화하고, 이에 따른 대응 속도와 정확도를 향상시킬 것으로 기대된다. 또한, 이 시스템은 다양한 분야에서 응용 가능하며, 대용량 데이터 처리에도 적합하다. 이를 통해 대학 청원 시스템에서 혐오성 발언 등 부적절한 내용을 사전에 방지하고 학생들의 의견을 효율적으로 수집할 수 있는 기능을 제공할 수 있다는 장점을 가지고 있다.

텍스트 문서 분류를 위한 베이지안망 학습 (Learning Bayesian Networks for Text Documents Classification)

  • 황규백;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.262-264
    • /
    • 2000
  • 텍스트 문서 분류는 텍스트 형태로 주어진 문서를 종류별로 구분하는 작업으로 웹페이지 검색, 뉴스 그룹 검색, 메일 필터링 등이 분야에 응용될 수 있는 기반 작업이다. 지금까지 문서를 분류하는데는 k-NN, 신경망 등 여러 가지 기계학습 기법이 이용되어 왔다. 이 논문에서는 베이지안망을 이용해서 텍스트 문서 분류를 행한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 DAG 형태인 망 구조와 각 노드에 연관된 지역확률분포로 구성된다. 그래프 모델을 사용할 경우 학습에 이용되는 각 속성들간의 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 실험 데이터로는 Reuters-21578 문서분류데이터를 이용했으며 베이안망의 성능은 나이브 베이즈 분류기와 비슷했다.

  • PDF

텍스트 기반 119 신고전화 상황 분류 (A text-based emergency situation classification method)

  • 곽세민;임윤섭;최종석
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2016년 정기학술대회
    • /
    • pp.304-306
    • /
    • 2016
  • 본 논문에서는 기계학습 방법에 기반을 둔 119 긴급 신고 전화 전사 데이터에 대한 구급, 구조, 화재 상황 분류 알고리즘을 개발하였다. 신고전화에서 빈번하게 발생하는 비정형 발화 패턴을 효율적으로 정규화하고 자연어 문장 처리 기법에서 일반적으로 사용하는 방법을 적용하여 신고전화 텍스트 데이터를 기계학습에서 사용할 수 있는 특징 벡터로 재구성하였다. 2743개의 신고전화에 대해 선형 서포트 벡터 머신을 이용하여 상황 분류를 수행한 결과, 92% 의 정확도를 얻을 수 있었다.

  • PDF

A Text Sentiment Classification Method Based on LSTM-CNN

  • Wang, Guangxing;Shin, Seong-Yoon;Lee, Won Joo
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권12호
    • /
    • pp.1-7
    • /
    • 2019
  • 머신 러닝의 심층 개발로 딥 러닝 방법은 특히 CNN(Convolution Neural Network)에서 큰 진전을 이루었다. 전통적인 텍스트 정서 분류 방법과 비교할 때 딥 러닝 기반 CNN은 복잡한 다중 레이블 및 다중 분류 실험의 텍스트 분류 및 처리에서 크게 발전하였다. 그러나 텍스트 정서 분류를 위한 신경망에도 문제가 있다. 이 논문에서는 LSTM (Long-Short Term Memory network) 및 CNN 딥 러닝 방법에 기반 한 융합 모델을 제안하고, 다중 카테고리 뉴스 데이터 세트에 적용하여 좋은 결과를 얻었다. 실험에 따르면 딥 러닝을 기반으로 한 융합 모델이 텍스트 정서 분류의 예측성과 정확성을 크게 개선하였다. 본 논문에서 제안한 방법은 모델을 최적화하고 그 모델의 성능을 개선하는 중요한 방법이 될 것이다.

자동문서분류를 위한 텐서공간모델 기반 심층 신경망 (A Tensor Space Model based Deep Neural Network for Automated Text Classification)

  • 임푸름;김한준
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.3-13
    • /
    • 2018
  • 자동문서분류(Text Classification)는 주어진 텍스트 문서를 이에 적합한 카테고리로 분류하는 텍스트 마이닝 기술 중의 하나로서 스팸메일 탐지, 뉴스분류, 자동응답, 감성분석, 쳇봇 등 다양한 분야에 활용되고 있다. 일반적으로 자동문서분류 시스템은 기계학습 알고리즘을 활용하며, 이 중에서 텍스트 데이터에 적합한 알고리즘인 나이브베이즈(Naive Bayes), 지지벡터머신(Support Vector Machine) 등이 합리적 수준의 성능을 보이는 것으로 알려져 있다. 최근 딥러닝 기술의 발전에 따라 자동문서분류 시스템의 성능을 개선하기 위해 순환신경망(Recurrent Neural Network)과 콘볼루션 신경망(Convolutional Neural Network)을 적용하는 연구가 소개되고 있다. 그러나 이러한 최신 기법들이 아직 완벽한 수준의 문서분류에는 미치지 못하고 있다. 본 논문은 그 이유가 텍스트 데이터가 단어 차원 중심의 벡터로 표현되어 텍스트에 내재한 의미 정보를 훼손하는데 주목하고, 선행 연구에서 그 효능이 검증된 시멘틱 텐서공간모델에 기반하여 심층 신경망 아키텍처를 제안하고 이를 활용한 문서분류기의 성능이 대폭 상승함을 보인다.

SHAP 분석 기반의 넙치 질병 분류 입력 파라미터 최적화 (Optimizing Input Parameters of Paralichthys olivaceus Disease Classification based on SHAP Analysis)

  • 조경원;백란
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1331-1336
    • /
    • 2023
  • 머신러닝을 이용한 텍스트 기반 어류 질병 분류에서 머신러닝 모델의 입력 파라미터가 너무 많은 문제가 존재하지만, 성능의 문제로 임의로 입력 파라미터를 줄일 수 없다. 본 논문에서는 이 문제를 해결하고자 SHAP 분석 기법을 활용해 넙치 질병 분류에 특화된 입력 파라미터 최적화 방안을 제시한다. 제안한 방법은 SHAP 분석 기법을 적용하여 넙치 질병 문진표에서 추출한 질병 정보의 데이터 전처리와 AutoML을 활용한 머신러닝 모델 평가 과정을 포함한다. 이를 통해 AutoML의 입력 파라미터의 성능을 평가하고, 최적의 입력 파라미터 조합을 도출한다. 본 연구에서 제안 방법은 필요한 입력 파라미터 수를 감소시키면서도 기존의 성능을 유지할 수 있을 것으로 기대되며, 이는 텍스트 기반 넙치 질병 분류의 효율성 및 실용성을 높이는 데 기여할 것이다.

텍스트 데이터의 정보 손실을 방지하기 위한 군집화 기반 언더샘플링 기법 (A Clustering-based Undersampling Method to Prevent Information Loss from Text Data)

  • 김종휘;신사임;장진예
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.251-256
    • /
    • 2022
  • 범주 불균형은 분류 모델이 다수 범주에 편향되게 학습되어 소수 범주에 대한 분류 성능을 떨어뜨리는 문제를 야기한다. 언더 샘플링 기법은 다수 범주 데이터의 수를 줄여 소수 범주와 균형을 이루게하는 대표적인 불균형 해결 방법으로, 텍스트 도메인에서의 기존 언더 샘플링 연구에서는 단어 임베딩과 랜덤 샘플링과 같은 비교적 간단한 기법만이 적용되었다. 본 논문에서는 트랜스포머 기반 문장 임베딩과 군집화 기반 샘플링 방법을 통해 텍스트 데이터의 정보 손실을 최소화하는 언더샘플링 방법을 제안한다. 제안 방법의 검증을 위해, 감성 분석 실험에서 제안 방법과 랜덤 샘플링으로 추출한 훈련 세트로 모델을 학습하고 성능을 비교 평가하였다. 제안 방법을 활용한 모델이 랜덤 샘플링을 활용한 모델에 비해 적게는 0.2%, 많게는 2.0% 높은 분류 정확도를 보였고, 이를 통해 제안하는 군집화 기반 언더 샘플링 기법의 효과를 확인하였다.

  • PDF

Combining Multiple Sources of Evidence to Enhance Web Search Performance

  • Yang, Kiduk
    • 한국도서관정보학회지
    • /
    • 제45권3호
    • /
    • pp.5-36
    • /
    • 2014
  • 웹은 하이퍼링크 및 야후와 같이 수동으로 분류된 웹 디렉토리 처럼 문서의 콘텐츠를 넘어선 다양한 정보의 소스가 풍부하다. 이 연구는 웹문서 내용을 활용한 텍스트기반의 검색 방식, 하이퍼 링크를 활용한 링크 기반의 검색 방식, 그리고 야후의 카테고리를 활용한 분류 기반의 검색 방식을 융합하므로서 여러 정보소스를 결합하면 검색 성능을 향상시킬 수 있다는 기존 융합검색연구들을 확장시켰다. 텍스트, 링크, 분류 기반 검색 결과를 여러가지 선형조합식으로 생성한 융합결과를 기존의 검색 평가 지표를 사용하여 각각의 검색 결과와 비교 한 후, 검색결과 오버랩의 중요성 또한 조사 하였다. 본 연구는 텍스트, 링크, 분류 기반 검색의 솔루션 스패이스들의 다양성이 융합검색의 적합성을 제시한다는 결론과 더불어 시스템 파라미터의 영향, 그리고 오버랩, 문서순위, 관련성들의 상호 관계 같은 융합 환경의 중요한 특성들을 분석하였다.

트랜스포머 기반 MBTI 성격 유형 분류 연구 : 소셜 네트워크 서비스 데이터를 중심으로 (Research on Transformer-Based Approaches for MBTI Classification Using Social Network Service Data)

  • 정재준;임희석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.529-532
    • /
    • 2023
  • 본 논문은 소셜 네트워크 이용자의 텍스트 데이터를 대상으로, 트랜스포머 계열의 언어모델을 전이학습해 이용자의 MBTI 성격 유형을 분류한 국내 첫 연구이다. Kaggle MBTI Dataset을 대상으로 RoBERTa Distill, DeBERTa-V3 등의 사전 학습모델로 전이학습을 해, MBTI E/I, N/S, T/F, J/P 네 유형에 대한 분류의 평균 정확도는 87.9181, 평균 F-1 Score는 87.58를 도출했다. 해외 연구의 State-of-the-art보다 네 유형에 대한 F1-Score 표준편차를 50.1% 낮춰, 유형별 더 고른 분류 성과를 보였다. 또, Twitter, Reddit과 같은 글로벌 소셜 네트워크 서비스의 텍스트 데이터를 추가로 분류, 트랜스포머 기반의 MBTI 분류 방법론을 확장했다.

  • PDF

한국어 텍스트의 논증 구조 내 담화 관계의 자동 분류 연구 (An Automatic Classification of Discourse Relations in the Arguing Structure of Korean Texts)

  • 이상아;신효필
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.59-64
    • /
    • 2015
  • 최근 온라인 텍스트 자료를 이용하여 대중의 의견을 분석하는 작업이 활발히 이루어지고 있다. 이러한 작업에는 주관적 방향성을 갖는 텍스트의 논증 구조와 중요 내용을 파악하는 과정이 필요하며, 자료의 양과 다양성이 급격히 증가하면서 그 과정의 자동화가 불가피해지고 있다. 본 연구에서는 정책에 대한 찬반 의견으로 구성된 한국어 텍스트 자료를 직접 구축하고, 글을 구성하는 기본 단위들 사이의 담화 관계를 정의하였다. 각 단위들 사이의 관계는 기계학습과 규칙 기반 방식을 이용하여 예측되고, 그 결과는 합성되어 하나의 글에 대응되는 트리 구조를 이룬다. 또한 텍스트의 구조상에서 주제문을 직접적으로 뒷받침하는 문장 혹은 절을 추출하여 글의 중요 내용을 얻고자 하였다.

  • PDF