• 제목/요약/키워드: 텍스타일 영상

검색결과 13건 처리시간 0.029초

내용, 감성, 메타데이터의 결합을 이용한 텍스타일 영상 검색 (Textile image retrieval integrating contents, emotion and metadata)

  • 이경미;박우창;이은옥;권혜영;차은미
    • 인터넷정보학회논문지
    • /
    • 제9권5호
    • /
    • pp.99-108
    • /
    • 2008
  • 본 논문에서는 텍스타일 영상의 내용 데이터, 감성 데이터, 메타데이터를 결합시킨 영상 검색 시스템을 제안한다. 섬유 패션의 정보를 가지고 있는 메타데이터와 영상의 색상 및 감성 색상을 이용한 내용의 결합은 그 동안의 섬유 패션산업과 관련된 영상 검색 시스템에서 진일보된 것이다. 우선 메타데이터의 정보를 통해서 영상을 검색하게 된다 검색된 영상 안에서 색상히스토그램과 색상스케치, 감성 히스토그램을 통하여 주어진 영상과 비슷한 영상들을 검색하게 된다. 본 논문에서는 텍스타일 영상으로부터 감성 특성을 추출하기 위해서, H, Nagumo의 배색이미지차트에서 제안하는 160개 감성어에 대한 감성 색상을 이용하였다. 본 논문에서 제안된 텍스타일 영상 검색 시스템에서 부가적인 기능인 돋보기 기능, 색상 히스토그램 기능, 색상 스케치 기능, 반복 패턴 보기 기능을 통해 검색된 텍스타일 영상들의 정보를 효과적으로 제공함으로써 사용자의 편의를 강화하였다.

  • PDF

감성 기반의 자동 텍스타일 영상 분류 시스템 (Automatic Textile-Image Classification System using Human Emotion)

  • 김영래;신윤희;김은이
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.561-564
    • /
    • 2008
  • 본 논문에서는 감성을 기반으로 텍스타일 영상을 자동으로 분류할 수 있는 시스템을 제안한다. 이 때, 사용된 감성 그룹은 고바야시의 10가지 감성 키워드 - {romantic, clear, natural, casual, elegant, chic, dynamic, classic, dandy, modern} - 를 이용한다. 제안된 시스템은 특징 추출과 분류로 구성된다. 특징 추출 단계에서는 텍스타일을 구성하는 대표 컬러를 추출하기 위해서 양자화 기법을 이용하고, 패턴정보를 표현하기 위해서는 웨이블릿 변환 후의 통계적인 정보를 이용한다. 신경망 기반의 분류기는 추출된 특징들을 입력으로 받아 입력 텍스타일 영상을 분류한다. 제안된 감성인식 방법의 효율성을 증명하기 위해서 220장의 텍스타일 영상에서 실험한 결과 제안된 방법은 99%의 정확도를 보였다. 이러한 실험 결과는 제안된 방법이 다양한 텍스타일 영상에 대해 일반화되어 사용될 수 있음을 보여주었다.

  • PDF

텍스타일 영상에서의 감성 기반 검색 시스템

  • 김영래;신윤희;김은이
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2009년도 춘계학술대회 미래 IT융합기술 및 전략
    • /
    • pp.82-87
    • /
    • 2009
  • 본 논문에서는 감성 기반으로 텍스타일을 자동으로 색인하고 검색 할 수 있는 시스템을 제안한다. 제안된 시스템은 영상 수집기, 감성 색인기, 검색기(Matcher), 질의 인터페이스로 구성되어 있다. 감성 색인기는 텍스타일 영상에 포함된 컬러와 패턴 정보를 기반으로 감성개념을 인식하고, 이를 이용하여 영상을 색인한다. 이때, 감성 어휘로 고바야시가 정의한 8개 (romantic, natural, casual, elegant, chic, classic, dandy, modern)를 사용한다. 질의 인터페이스에서 사용자는 두 가지 방식으로 질의를 선택할 수 있다. 첫 번째 방법은 감성 키워드를 사용하는 것이고, 두 번째는 사용자의 의도를 설명할 수 있는 영상을 이용하는 예제 기반 질의 방식이다. 질의가 주어지면, 검색기는 랭킹 알고리즘을 사용하여 검색 결과를 생성한다. 이 때, 유사도 비교방식은 선택된 질의방식에 따라 달라진다. 제안된 시스템의 성능을 검증하기 위해 웹 검색에 익숙한 50명(남자: 32명, 여자: 18명)을 대상으로 웹에서 수집한 3,416 장에 대해서 3가지 항목으로 사용자 평가를 하였다. 사용자 평가의 항목인 적합도(Relevance), 노력(Search Effort), 만족도(Satisfaction)의 결과로 사용자가 검색한 결과영상에서 적합도의 수치가 낮게 나왔지만, 만족도와 노력의 수치는 높게 평가되었다. 제안된 시스템에서 사용자는 자신이 선호하는 결과 영상을 상위 40개의 영상 내에서 얻을 수 있었다. 이는 제안된 시스템이 사용자들이 원하는 영상을 효율적으로 검색할 수 있다는 것을 증명했다.

  • PDF

퍼지시스템을 이용한 텍스타일 인덱싱 (Textile Indexing using Fuzzy System)

  • 류형주;채송아;김수정;김은이;김지인;정갑주;구현진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.787-789
    • /
    • 2004
  • 본 논문에서는 퍼지 시스템을 이용하여 칼라 패턴으로부터 인간의 강성을 예측하는 텍스타일 인덱싱 시스템을 제안한다. 텍스타일 인덱싱이란 입력받은 직물 영상을 섬유의 영상을 강성 특징으로 색인화 하는 것이다. 제안된 시스템은 입력 영상에 대해 warm-cold, strong-weak, heavy-light특징이 어느 정도 있는지 조사한다. 제안된 시스템은 크게 특징추출 부분과 감성 분류로 구성한다. 특징 추출은 입력 영상에서 컬러 점보와 텍스처 정보를 추출하고, 감성 분류는 특징 추출 부분으로부터 얻어진 정보들을 분석하여 영상 내 포함된 강성을 찾아낸다. 이때 분류를 위해서 본 논문에서는 퍼지 시스템을 사용한다. 퍼지 룰은 80개의 영상에 대하여 70명의 설문조사를 기반으로 하여 경험적으로 얻어졌다. 제안된 시스템은 80개의 영상에 대하여 테스트 해본 결과는 제안된 시스템의 효율성을 보여주었다.

  • PDF

컬러와 패턴을 이용한 텍스타일 영상에서의 감정인식 시스템 (Emotion Recognition Using Color and Pattern in Textile Images)

  • 신윤희;김영래;김은이
    • 전자공학회논문지CI
    • /
    • 제45권6호
    • /
    • pp.154-161
    • /
    • 2008
  • 본 논문에서는 컬러와 패턴 정보를 이용하여 텍스타일 영상에 포함된 감성을 자동으로 인식할 수 있는 방법을 제안한다. 이때, 감성을 표현하기 위해 고바야시의 10가지 감성 그룹 - {romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modern}- 을 이용한다. 제안된 시스템은 특징 추출과 분류로 구성된다. 특징 추출 단계에서는 주관적인 감성을 물리적인 영상 특징으로 표현하기 위해 텍스타일을 구성하는 대표 컬러와 패턴을 추출 한다. 이 때 대표 컬러를 추출하기 위해서 양자화 기법을 이용하고, 패턴정보를 표현하기 위해서는 웨이블릿 변환 후의 통계적인 정보를 이용한다 추출된 컬러와 패턴 특징은 신경망을 이용한 분류기의 입력으로 사용되고, 분류기를 통해 입력 텍스타일이 임의의 감성을 가지는지 여부가 결정된다. 제안된 감성인식 방법의 효율성을 증명하기 위해서 인위적인 도메인, 패션 도메인, 인테리어 도메인에서 얻어진 389장의 텍스타일 영상에서 실험하였다. 다양한 도메인의 영상에 대해 사용된 결과 제안된 방법은 100%의 정확도와 99%의 재현율을 보였다. 이러한 실험 결과는 제안된 감성인식 방법이 다양한 텍스타일 관련 산업분야에 일반화되어 사용될 수 있음을 보여주었다.

신경망을 이용한 텍스타일 영상에서의 감성인식 시스템 (Emotion Recognition System Using Neural Networks in Textile Images)

  • 김나연;신윤희;김수정;김지인;정갑주;구현진;김은이
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권9호
    • /
    • pp.869-879
    • /
    • 2007
  • 본 논문에서는 신경망을 이용하여 텍스타일 영상으로부터 인간의 감성을 인식할 수 있는 시스템을 제안한다. 자동감성인식 시스템의 구현을 위해 220장의 텍스타일 영상을 수집한 후, 일반인 20명을 대상으로 설문조사를 실시하였다. 이를 통해 텍스타일 영상에서의 패턴과 감성간의 상관관계, 즉 특정 패턴이 사람의 감성에 영향을 준다는 것을 발견하였다. 따라서 본 연구에서는 텍스타일 영상에 포함된 패턴의 인식을 위해 신경망을 이용하였으며, 이때 패턴 정보의 추출을 위해 두 가지 특징 추출 방법을 사용한다. 첫 번째는 auto-regressive method를 이용한 raw-pixel data extraction scheme(RDES)을 사용하는 것이고, 두 번째는 wavelet transformed data extraction scheme(WTDES)을 사용하는 것이다. 제안된 시스템의 유용성을 증명하기 위해서 실제 100장의 텍스타일 영상을 감성을 인식하는데 사용했다. 그 결과 RDES와 WTDES를 사용했을 때 각각 71%와 90%의 인식률로, WTDES를 사용했을 때가 RDES를 사용했을 때보다 더 좋은 성능을 보였다. 데이타 추출방법에 따라 다소 차이가 있었지만 전체적으로 약 81%의 정확도를 보였다. 이러한 실험 결과는 제안된 방법이 감성인식 기반으로 텍스타일 데이타를 검색 할 수 있는 시스템 및 다양한 산업 분야에 응용 가능함을 보여주었다.

텍스타일 영상의 내용과 메타데이터의 결합을 통한 검색 (Image retrieval integrated image contents and metadata)

  • 권혜영;김근하;김하얀;이경미;박우창;이은옥
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.465-469
    • /
    • 2007
  • 본 논문에서는 텍스타일 영상의 내용 데이터와 메타데이터를 결합시킨 영상 검색 시스템을 제안한다. 섬유 패션의 정보를 가지고 있는 메타데이터와의 결합은 그 동안의 섬유 패션 산업과 관련된 영상 검색 시스템에서 진보된 것이다. 우선 메타데이터의 정보를 통해서 영상을 검색하게 된다. 검색된 영상 안에서 색상히스토그램과 색상스케치를 통하여 주어진 영상과 비슷한 영상들을 검색하게 된다. 이러한 방법은 영상내용만을 통해 검색했던 것 뿐만아니라 텍스트가 가지고 있는 의미를 보안하여 보다 효과적인 검색을 할 수 있었다. 본 논문에서 제안된 시스템에서 부가적인 기능인 돋보기 기능, 색상 히스토그램 기능, 색상 스케치 기능, 반복 패턴 보기 기능을 통해 검색된 영상들의 정보를 효과적으로 제공함으로써 사용자의 편의를 강화하였다.

  • PDF

신경망을 이용한 감성인식 시스템 (Emotion Recognition System Using Neural Networks)

  • 김나연;신윤희;김수정;김지인;정갑주;구현진;김은이
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.271-273
    • /
    • 2006
  • 본 논문에서는 신경망을 이용하여 텍스타일 영상으로부터 인간의 강성을 인식할 수 있는 시스템을 제안한다. 자동감성인식 시스템의 구현을 위해 220장의 텍스타일 영상을 수집한 후, 일반인 20명을 대상으로 설문조사를 실시하였다. 이를 통해 감성과 패턴간의 상관관계, 즉 특정 패턴이 사람의 감성에 영향을 준다는 것을 발견하였다. 따라서 본 연구에서는 영상에 포함된 패턴의 인식을 위해 신경망을 이용하였으며, 이때 패턴 정보의 추출을 위해 두 가지 특징 추출 방법을 사용한다. 첫 번째는 auto-regressive method를 이용한 raw-pixel data extraction scheme (RDES)을 사용하는 것이고, 두 번째는 wavelet transformed data extraction scheme (WTDES)을 사용하는 것이다. 제안된 시스템의 유용성을 증명하기 위해서 실제 100장의 텍스타일 영상에서의 감성을 인식하는데 사용했다. 그 결과 RDES와 WTDES를 사용했을 때 각각 71%와 90%의 인식률로, WTDES를 사용했을 때가 RDES를 사용했을 때보다 더 좋은 성능을 보였다. 데이터 추출방법에 따라 다소 차이가 있었지만 전체적으로 악 81%의 정확도를 보였다. 이러한 실험 결과는 제안된 방법이 감성인식 기반으로 텍스타일 데이터를 검색 할 수 있는 시스템 및 다양한 산업 분야에 응용 가능함을 보여주었다.

  • PDF

영상처리를 이용한 향균성 시험방법 신뢰성 개선 (Enhancing Reliability of Antibacterial Test Methods using Image Processing)

  • 엄원용;박재우;김지훈;강진우
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.597-602
    • /
    • 2017
  • 본 논문에서는 군에서 사용하는 텍스타일 재료에 대한 항균성 시험방법의 신뢰성 확보 방안을 제시하고자 하였다. 항균성은 일반적으로 세균의 증식을 억제하고 유해한 균을 제거하는 것을 말하며, 항균성을 측정하는 시험방법은 텍스타일 재료의 특성과 형태에 따라 다양한 방법이 있다. 항균성 시험방법인 KS K 0693 '텍스타일 재료의 향균성 시험방법'에 따르면, 콜로니 수를 측정할 때 시험자가 육안으로 세어 측정한다. 이때 시험자의 숙달수준에 따른 측정오차가 발생할 가능성이 크며 자동화되지 않아 비교적 시간이 오래 걸린다. 이러한 단점을 개선하기 위해 영상처리 기술을 적용하여 향균도를 측정하는 방법을 제안한다. 시험자료는 '방탄헬멧 부유대조립체 완충패드'의 외피소재를 대상으로 하고, 공인시험기관에서 발급된 시험 성적서에 첨부된 배양배지 영상을 사용하였다. 배양배지 영상을 전처리 한 후 분할 및 이진화 처리 후 영상 내 입자의 수를 세어 콜로니수를 확인하는 방법을 제안한다. 제안하는 방법을 적용한 항균도 측정결과와 기존 시험방법의 측정결과를 비교한 결과, 제안하는 방법은 기존의 시험방법을 통한 항균성 측정결과 대비 0.9%p 정도의 차이를 보였다. 제안하는 방법은 측정자의 오차를 제거하여 신뢰성을 확보할 수 있으며 측정 시간이 짧다는 장점이 있다.

Digital Library를 위한 텍스타일 프린트 디자인의 이미지 유사성 평가 (Similarity Evaluation on Images of Textile Print Design for Digital Library)

  • 이채정;김주용
    • 감성과학
    • /
    • 제10권4호
    • /
    • pp.631-637
    • /
    • 2007
  • 이미지의 유사성을 결정하는 요인을 톤(tone), 즉 명도와 채도로 결정하여 정보 엔트로피를 계산하여 상관 계수를 계산하였다. 이미지의 톤을 알아보기 위해 영상정보의 색 공간을 RGB color space에서 HSI color space로 전환하였다. 이후 유사성을 판단하기 위해 이미지의 전체 픽셀수가 아닌 엔트로피 값의 범위에 따라 전체 70%의 픽셀 또는 이미지를 가장 많이 구성하는 세 가지 톤의 픽셀 수에 의해 결정되었다. 'Romantic'이라는 인간의 감성으로 판단된 18개의 영상정보를 선정하여 위의 모델을 적용, 이미지 유사성을 판단하였다.

  • PDF