• 제목/요약/키워드: 테트리스 문제

검색결과 2건 처리시간 0.017초

사례 기반 결정 이론을 융합한 포텐셜 기반 강화 학습 (Potential-based Reinforcement Learning Combined with Case-based Decision Theory)

  • 김은선;장형수
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권12호
    • /
    • pp.978-982
    • /
    • 2009
  • 본 논문에서는 다수의 강화 학습 에이전트들의 학습 결과 및 Expert의 지식을 하나의 학습 알고리즘으로 융합하는 강화학습인 "potential-based" reinforcement learning(RL)기법에 불확실한 환경에서의 의사결정 알고리즘인 Case-based Decision Theory(CBDT)를 적용한 "RLs-CBDT"를 제안한다. 그리고 테트리스 실험을 통하여 기존의 RL 알고리즘에 비해 RLs-CBDT가 최적의 정책에 더 마르게 수렴하는 것을 보인다.

Dynamic CBDT : Q-learning의 강화기법을 응용한 CBDT 확장 기법 (Dynamic CBDT : Extension of CBDT via Reinforcement Method of Q-learning)

  • 진영균;장형수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.194-199
    • /
    • 2006
  • 본 논문에서는 불확실한 환경 상에서의 의사결정 알고리즘인 "Case-based Decision Theory" (CBDT) 알고리즘을 dynamic하게 연동되는 연속된 의사결정 문제에 대하여 강화학습의 대표적인 Q-learning의 강화기법을 응용하여 확장한 새로운 의사결정 알고리즘 "Dynamic CBDT"를 제안하고, CBDT알고리즘에 대한 Dynamic CBDT의 효율성을 테트리스 실험을 통하여 확인한다.

  • PDF