• Title/Summary/Keyword: 테트리스 문제

Search Result 2, Processing Time 0.014 seconds

Potential-based Reinforcement Learning Combined with Case-based Decision Theory (사례 기반 결정 이론을 융합한 포텐셜 기반 강화 학습)

  • Kim, Eun-Sun;Chang, Hyeong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.978-982
    • /
    • 2009
  • This paper proposes a potential-based reinforcement learning, called "RLs-CBDT", which combines multiple RL agents and case-base decision theory designed for decision making in uncertain environment as an expert knowledge in RL. We empirically show that RLs-CBDT converges to an optimal policy faster than pre-existing RL algorithms through a Tetris experiment.

Dynamic CBDT : Extension of CBDT via Reinforcement Method of Q-learning (Dynamic CBDT : Q-learning의 강화기법을 응용한 CBDT 확장 기법)

  • Jin, Y.K.;Chang, H.S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.194-199
    • /
    • 2006
  • 본 논문에서는 불확실한 환경 상에서의 의사결정 알고리즘인 "Case-based Decision Theory" (CBDT) 알고리즘을 dynamic하게 연동되는 연속된 의사결정 문제에 대하여 강화학습의 대표적인 Q-learning의 강화기법을 응용하여 확장한 새로운 의사결정 알고리즘 "Dynamic CBDT"를 제안하고, CBDT알고리즘에 대한 Dynamic CBDT의 효율성을 테트리스 실험을 통하여 확인한다.

  • PDF