• Title/Summary/Keyword: 텅스텐 치환

Search Result 10, Processing Time 0.034 seconds

$K_3Li_2(Nb_xTa_{1-x})_5O_{15}$ 세라믹스의 Nb/Ta비에 따른 전기적 특성 변화

  • Kim, Yeong-Seop;Lee, Jun-Hyeong;Kim, Jeong-Ju;Lee, Hui-Yeong;Jo, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.39-39
    • /
    • 2003
  • 텅스텐브론즈 세라믹스의 결정구조는 산소 팔면체를 뼈대로 각각 다른 형태의 A, C, B 양이온 자리로 이루어져 있다. A, C의 양이온 자리는 알카리 이온 또는 알카리 토금속 이온으로 채워지며, B 자리는 Nb 또는 Ta 이온으로 채워지게 된다. 이 중 A와 C 자리가 채워지는 정도로 unfilled, filled, completely filled 텅스텐브론즈로 나누어지게 된다. completely filled 텅스텐브론즈의 대표적인 물질인 $K_3Li_2Nb_5O_{15}$(KLN)는 전광특성, 비선형 광학특성으로 인하여 다양한 광소자로의 응용과 압전 특성, 초전 특성을 이용한 압전 소자로의 응용이 가능한 재료로 보고되고 있다. 하지만 이러한 꽉 찬 결정구조로 인하여 KLN의 경우 한정된 고용영역을 가지고 있어 물리적 성질의 변화가 제한되어 있는데, 이를 극복하기 위한 여러 가지 시도가 있었다. 이 중 A 자리와 C 자리를 치환하는 연구는 많이 알려져 있으나 치환시 빈 자리를 수반하는 경우가 대부분이다. 반면, B 자리를 치환하는 연구는 Nb를 Ta로 치환하는 경우가 알려져 있는데 이 경우 결정내에 빈자리가 생성되지 않는다. 이들 연구는 모두 단결정의 경우에 국한되어 있으며 단결정 제조시에는 조성을 정확히 조정하기 어렵고, 냉각시 crack이 발생하는 등의 문제를 가지고 있어 그 응용이 제한되고 있다. 따라서 본 연구에서는 KLN 다결정 세라믹스에서 Nb를 Ta으로 치환하여 치환에 따른 상변화와 치밀화 거동, 그리고 이에 따른 전기적 특성을 조사하여 이들 간의 상관관계를 조사하였다.

  • PDF

Evaluation of Creep Properties of W-substituted 2205 Duplex Stainless Steel (W치환 2205 이상 스테인리스강의 크리프 특성 평가에 관한 연구)

  • Kim, Gi-Yeob;Choi, Byong-Ho;Nam, Ki-Woo;Ahn, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • The effect of the substitution of Tungsten(W) for Molybdenum(Mo) on the creep behaviour of 22Cr-5Ni duplex stainless steel(DSS) has been investigated. Creep tests were carried out at $600^{\circ}C\;and\;650^{\circ}C$. Intermetallic ${\sigma}$ phase is precipitated during creep at $650^{\circ}C$, at which creep rupture time was much lower compared with at $600^{\circ}C$. The substitution of W for Mo in the duplex stainless steel was known to retard the formation of ${\sigma}$ phase. Minimum creep rate and creep rupture time, however, were hardly influenced by the substitution of 2wt.% W. An ultrasonic measurement for the creep specimens has been carried out for the evaluation of creep damage. The sound velocity increases propotionally with the increase of creep rupture time at $600^{\circ}C$ of creep temperature. On the contrary, the sound velocity decreases with the increase of rupture time at $650^{\circ}C$, which can be correlated with the microstructural evolution during creep.

Effect of Tungsten-Substitution on the Corrosion Resistance of 2205 Duplex Stainless Steel (2205 2상 스테인리스강의 내식성에 미치는 텅스텐 치환의 영향)

  • 김기엽;안용식;정병호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.704-713
    • /
    • 2003
  • The effect of partial substitution of tungsten for molybdenum on the microstructure and corrosion resistance in 22Cr-5Ni-3Mo duplex stainless steel(DSS) aging heat treated in a temperature range of 600~$1000^{\circ}C$ has been investigated. Electrochemical tests were carried out for the evaluation of corrosion resistance. Aging treatment had hardly influenced the general corrosion resistance. With the increase of aging time, the pitting corrosion resistance of the DSS had decreased, After aging for 2min at 700~$900^{\circ}C$, the pitting potential of the 3Mo steel decreased remarkably, while that of the W-substituted steel hardly changed. During aging. the intermetallic $\sigma$ and secondary austenite ($\gamma_2$) phases were precipitated. and the pitting corrosion and intergranular corrosion resistance were significantly decreased after aging at 700~$750^{\circ}C$ for 10 h, which could be caused by the $\gamma_2$ formation. The ${\gamma}$$_2$ phase could affect the depletion of molybdenum and chromium in the $\gamma_2/\alpha and \gamma_2/\sigma$ boundaries.

Synthesis and Properties of In-situ $MoSi_2$/W Composites ($MoSi_2$/W 복합재료의 합성과 성질에 관한 연구)

  • Jang, Dae-Kyu;Abbaschian, R.
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.938-944
    • /
    • 1998
  • $MoSi_2$/W composites were fabricated by vacuum hot press at $1600^{\circ}C$ under 30MPa for 3 hrs. The effects of the amount of tungsten in the composites was explained in terms of the microstructure and mechanical properties. Although tungsten was mainly substituted to Mo atoms forming a complete solid solution of (Mo.W).Si, (x= 1, 5, y=2, 3). the grain size of composites became smaller with the increase of tungsten added. Vickers hardness was increased with the increase of tungsten content due to the solid-solution hardening. On the other hand, toughness of composites decreased sharply by increasing the amount of tungsten. Optimum tungsten amount was determined to be a 10 vol% of composite. Indentation fracture toughness was calculated to be 4.5MPa\sqrt{m}$ in this composites, compared with $2.7MPa\sqrt{m}$ in pure $MoSi_2$.

  • PDF

The Effect of Aging Treatment on the Corrosion Resistance in Super Duplex Stainless Steel with Added W (텅스텐이 첨가된 슈퍼 2상 스테인리스강의 내식성에 미치는 시효처리의 영향)

  • Kim, Soo-Chun;Choi, Han-Gul;Kim, Yun-Kyu;Park, Young-Tae;Lee, Jong-Mun;Park, Jin-Hwan;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.87-92
    • /
    • 2009
  • The effect of aging on the precipitation of the $\sigma$ phase and the corrosion resistance in tungsten substituted super duplex stainless steels was investigated. The volume fraction of the $\sigma$ phase and the current density increased with aging at temperatures up to $750^{\circ}C$ and then decreased. With an increase in aging time, the volume fraction of the $\sigma$ phase and the current density also increased. The $\sigma$ phase hardly influenced the corrosion resistance. With the substitution of tungsten for molybdenum in super duplex stainless steel, the volume fraction of the $\sigma$ phase and the current density decreased remarkably.

Simple Heteropoly Acids as Water-Tolerant Catalysts in the Oxidation of Alcohols with 34% Hydrogen Peroxide, A Mechanistic Approach (34% 과산화 수소와 함께 알코올의 산화에서 수분-관용적인 촉매로서의 간단한 헤테로 다중산)

  • Tayebee, Reza
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Simple Keggin type tungsten and molybdenum heteropoly acids, H3PW12O40 and H3PMo12O40, were usedas water-tolerant catalysts for the oxidation of alcohols with 34% hydrogen peroxide in normal drinking water. Accordingto our findings, H3PW12O40 may be used as a simple, effective, and cheap catalyst for this type of transformation in nor-mal drinking water with excelent yields. Efects of diferent solvents at 25-80oC and changing concentration of catalystand substrate on the reaction progress were also studied.

Study of Corrosion Resistance in Super-Duplex, Tungsten-Containing Stainless Steel (텅스텐이 첨가된 슈퍼 2상 스테인리스강의 내부식성에 관한 연구)

  • Choi, Han-Gul;Park, Hyung-Gyun;Jung, Byung-Ho;Han, Hyun-Sung;Bae, Dong-Su;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.55-59
    • /
    • 2010
  • The effect of aging on the precipitation of the $\sigma$ phase and corrosion resistance in W-substituted, super-duplex stainless steel was investigated. The volume fraction of the $\sigma$ phase and the current density increased as the aging temperature increased up to $750^{\circ}C$, and, then, they decreased. As aging time increased, the volume fraction of the $\sigma$ phase and the current density also increased. The $\sigma$ phase considerably influenced to corrosion resistance. When Mo was substituted for W in super-duplex stainless steel, the volume fraction of the $\sigma$ phase and the current density both decreased markedly.

A Study on the Precipitation Mechanism of Quartz Veins from Sangdong Deposit by Analyses of Vein Texture and Trace Element in Quartz (상동광산 석영맥의 조직 및 석영의 미량원소 분석을 통한 광맥 침전 기작 도출)

  • Youseong Lee;Changyun Park;Yeongkyoo Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.239-257
    • /
    • 2023
  • Sangdong deposit, a W-Mo skarn deposit, is located in Taebaeksan mineralized district, hosting vertically developed scheelite-quartz veins that formed at the late ore-forming stage. In this study, we tried to examine the geochemical signatures of ore-forming fluids and vein-forming mechanisms by analyzing the micro-texture of quartz veins and trace element concentrations of quartz. As a result of texture analyses, quartz veins in the hanging wall orebody and the foot wall orebody commonly exhibit the blocky and the elongate blocky texture, respectively, whereas quartz veins in the main orebody show both textures. These textural differences indicate that quartz veins from the hanging wall orebody were precipitated by the primary hydrofracturing due to H2O saturation in the igneous body with relatively high temperature and pressure at a vein-skarn stage, and after that, repeated hydrofracturing caused the formation of quartz veins from the main orebody and foot wall orebody. The results of trace element concentrations show that Li++Al3+↔Si4+ is a main substitution mechanism. However, those of the foot wall orebody were clearly divided into a Li+-dominated substitution and a Na+-, K+-dominated substitution. Considering that quartz veins from the foot wall orebody commonly show the elongate blocky texture, such a distinction means that it is a result of repeated injections of fluid with the different composition. Ti concentrations of quartz from the hanging wall, main, and the foot wall orebody are 28.6, 8.2, and 15.7 ppm in average, respectively. Given a proportional relationship between the precipitation temperature and Ti concentrations, it seems that quartz veins from the hanging wall orebody were precipitated at the highest temperature. Al concentrations of the hanging wall, main, and the foot wall orebody having an inverse relationship with fluid pH are 162.3, 114.2, and 182.5 ppm in average, respectively. These results show that Al concentrations in vein-forming fluids were not changed dramatically. Moreover, these concentrations are extremely low in comparison with the other hydrothermal deposits. This indicates that quartz in overall ore veins at Sangdong deposit was precipitated from the constant condition with slightly acidic to near neutral pH.

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.