• Title/Summary/Keyword: 텅스텐 입자

Search Result 51, Processing Time 0.034 seconds

Recovery of rare metals from SCR spent catalyst (탈질 폐촉매로부터 유가금속 회수)

  • Lee, Jin-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.94-94
    • /
    • 2014
  • 본 연구는 탈질용 폐 SCR 촉매로부터 유가금속인 바나듐과 텅스텐을 회수하기 위하여 고온 소다배소, 수침출, 침전 및 용매추출 실험 순으로 진행하였다. 소다배소는 $Na_2CO_3$ 첨가량 5당량, 폐촉매 평균 입자크기 $54{\mu}m$, 배소온도 $850^{\circ}C$, 배소시간 120분의 조건이 적절하였고, 소다배소 산물의 수침출 실험은 배소산물 입자크기 $-45{\mu}m$, 침출온도 $40^{\circ}C$, 침출시간 30분 및 광액밀도 10%의 조건이 적절하였다. 이와 같은 조건하에서 소다배소 및 수침출 실험을 수행한 결과, 바나듐 성분 약 46%와 텅스텐 성분 약 92%가 침출 되었다. 수침출 공정에서 얻어진 바나듐과 텅스텐이 함께 침출된 침출용액으로부터 바나듐 성분을 선택적으로 침전시키기 위하여 MgCl2를 사용하여 침전실험을 수행하였으나, 바나듐 성분이 침전될 때 텅스텐 성분이 함께 침전되어 큰 손실율을 나타내었다. 또한, 침출용액 내의 바나듐과 텅스텐 성분을 분리하기 위하여 용매추출 실험을 수행하였다. 아민계열의 추출제인 Alamine 336 및 Aliquat 336을 사용한 용매추출 실험에서 바나듐과 텅스텐 성분 모두 90% 이상 추출되었다. 이후 수행된 탈거실험에서 대부분의 역추출제에 의해 바나듐과 텅스텐은 동시에 탈거되었다. 그러나 Alamine 336을 추출제로 사용한 유기상의 탈거실험에서 NaCl 및 NH4Cl 용액을 탈거용액으로 사용하였을 경우에 바나듐과 텅스텐이 선택적으로 탈거될 수 있는 가능성을 나타내었다. 반면에 Aliquat 336을 추출제로 사용한 유기상의 탈거실험의 경우, NaOH 용액이 가장 선택적인 탈거용액임을 확인하였다.

  • PDF

Effect of Particle Size of Tungsten Powder on the Properties of Vacuum Plasma Sprayed Tungsten coatings

  • Kim, Ho-Seok;Mun, Se-Yeon;Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.205.1-205.1
    • /
    • 2016
  • 핵융합로에서 고온, 고에너지 플라즈마에 장기간 노출되는 플라즈마 대면재는 고속 입자와 중성자에 의한 열화 및 침식과 높은 열부하를 견뎌야 하므로 높은 수준의 재료기술과 표면 코팅기술의 개발이 필요하다. 텅스텐은 용융점이 높고, 스퍼터링(Sputtering) 현상이 적으며, Tritium 재침적 현상이 제한되는 우수한 특성 때문에 핵융합로 대면제에 적용하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 VPS(vacuum plasma spray) 장비를 이용하여 5, 10, $25{\mu}m$ 크기의 텅스텐 분말을FM(ferritic-martenitic) steel 기판에 용사 코팅하였다. 입자 크기를 달리하여 제작한 3종의 시편은 시편 전후 두께 및 무게 변화, 현미경이미지, 비커스 경도, 3D 표면 형상, XRD를 이용하여 코팅층의 특성을 평가하였으며, $10{\mu}m$ 크기의 텅스텐 분말 시편이 가장 우수한 특성을 나타내는 것을 확인하였다.

  • PDF

Evaluation of the Usefulness of Tungsten Nanoparticles as an Alternative to Lead Shielding Materials in Electron Beam Therapy (전자선 치료시 납 차폐체 대체물질로서의 텅스텐 나노입자의 유용성 평가)

  • Kim, Ji-Hyang;Kim, Na-Kyoung;Lee, Gyu-Yeong;Jung, Da-Bin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.949-956
    • /
    • 2021
  • The purpose of this paper is to evaluate whether tungsten nanoparticles have a shielding effect on scattered light generated at high doses as an alternative material to lead used to shield scattered light in electron beam therapy. A plate was manufactured to set the position of the dosimeter and the size of the radiation field to be constant. The glass dosimeter was placed at 12 points, which were 1, 2, and 4 cm apart from the center of the field of 10 × 10 cm2 in the cross direction. A total of 12 types of tungsten nanoparticle shields were developed with a thickness of 0.75 mm to 4.00 mm and a size of 10 × 10 cm2 using 0.4, 0.75, and 1 mm materials. Using a linear accelerator, measurements were made four times at 6 MeV and four times at 12 MeV, and the dose intensity was investigated at 100 MU. The 4 mm shielding plate showed the highest shielding effect at 1 cm from the irradiation field. The 1 mm shielding plate at 2 cm from the irradiation field had the lowest shielding effect. As the thickness of the tungsten shielding plate increased, the electron beam's shielding effect increased sharply. It was confirmed that tungsten nanoparticles can reduce the amount of scattered light generated by electron beam therapy. Therefore, this study will provide basic data when follow-up studies are conducted on the shielding ability of tungsten nanoparticles.

Comparative Evaluation of Shielding Performance according to the Characteristics of Eco-friendly Shielding Material Tungsten (친환경 차폐재료 텅스텐 특성에 따른 차폐성능 평가)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.129-136
    • /
    • 2021
  • Radiation shields used in medical institutions mainly use lead to manufacture products and fitments. Although lead has excellent processability and economic efficiency, its use is being reduced due to environmental issues when it is disposed of. In addition, when used for a long time, there is a limit to using it as a shielding film, shielding wall, medical device parts, etc. due to cracking and sagging due to gravity. To solve this problem, copper, tin, etc. are used, but tungsten is mostly used because there is a difficulty in the manufacturing process to control the shielding performance. However, it is difficult to compare with other shielding materials because the characteristics according to the type of tungsten are not well presented. Therefore, in this study, a medical radiation shielding sheet was manufactured in the same process using pure tungsten, tungsten carbide, and tungsten oxide, and the particle composition and shielding performance of the sheet cross-section were compared.As a result of comparison, it was found that the shielding performance was excellent in the order of pure tungsten, tungsten carbide, and tungsten oxide.

Preparation and Characterization of Tungsten Carbide Using Products of Hard Metal Sludge Recycling Process (초경합금 슬러지 재활용 공정 산물을 활용한 텅스텐 탄화물 제조 및 특성 평가)

  • Kwon, Hanjung;Shin, Jung-Min
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.19-25
    • /
    • 2022
  • In this study, tungsten carbide (WC) powder was prepared using a novel recycling process for hard metal sludge that does not use ammonium paratungstate. Instead of ammonia, acid was used to remove the sodium and crystallized tungstate, resulting in the formation of tungstic acid (H2WO4). The WC powder was successfully synthesized by the carbothermal reduction of tungstic acid through H2O decomposition, reduction of WO3 to W, and formation of WC. The carbon content and holding time at the carbothermal reduction temperature were optimized to remove free carbon from the WC powder. As a result, most of the free carbon in the WC powder prepared from sludge was removed, and the content of free carbon in the synthesized WC powder was lower than that in commercial WC powder. Moreover, the crystallite size of WC prepared from H2WO4 was much smaller than that of commercial micron-sized WC powder produced from APT. The small crystallite size of WC induces grain growth during the sintering of the WC-Co composite; thus, a WC-Co composite with large WC grains was fabricated using the WC powder prepared from H2WO4. The large WC grains affected the mechanical properties of the WC-Co composite. Further, due to the large grain size, the WC-Co composite fabricated from H2WO4 exhibited a higher toughness than that of the WC-Co composite prepared from commercial WC powder.

3D Printing of Tungsten-Polymer Composites for Radiation Shielding (방사선 차폐를 위한 3D 프린팅용 텅스텐-고분자 복합체 설계)

  • Eom, Don-Geon;Kim, Shin-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.643-650
    • /
    • 2020
  • The materials with a high processiblity for radiation shielding, in particular for 3D printable materials, are highly demanding for producing robots working in nuclear plants and designing customized personal protection equipment. In this study, we suspend tungsten particles in a polymeric matrix of either PLA or ABS to compose tungsten-polymer composite filaments; PLA and ABS are widely used for conventional FDM-based 3D printing. The weight fraction of tungsten particles can be increased up to 50% without forming macroscopic aggregates. The composite filaments can be used to print 3D architectures with any shape and geometry. To demonstrate one of potential applications, we print parts for robot actuator and assemble them to protect PCB against gamma ray.

Tungsten CMP using Fixed Abrasive Pad with Self-Conditioning (Self-Conditioning을 이용한 고정입자패드의 텅스텐 CMP)

  • Park, Boum-Young;Kim, Ho-Youn;Seo, Heon-Deok;Jeong, Hae-Do
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1296-1301
    • /
    • 2003
  • The chemical mechanical polishing(CMP) is necessarily applied to manufacturing the dielectric layer and metal line in the semiconductor device. The conditioning of polishing pad in CMP process additionally operates for maintaining the removal rate, within wafer non-uniformity, and wafer to wafer non-uniformity. But the fixed abrasive pad(FAP) using the hydrophilic polymer with abrasive that has the swelling characteristic by water owns the self-conditioning advantage as compared with the general CMP. FAP also takes advantage of planarity, resulting from decreasing pattern selectivity and defects such as dishing due to the reduction of abrasive concentration. This paper introduces the manufacturing technique of FAP. And the tungsten CMP using FAP achieved the good conclusion in point of the removal rate, non-uniformity, surface roughness, material selectivity, micro-scratch free contemporary with the pad life-time.

  • PDF

Evaluation on Tungsten CMP Characteristic using Fixed Abrasive Pad with Alumina (알루미나 고정입자패드를 이용한 텅스텐 CMP 특성 평가)

  • 박범영;김호윤;김형재;서헌덕;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.206-209
    • /
    • 2002
  • The fixed abrasive pad(FAP) has been introduced in chemical mechanical polishing(CMP) field recently. In comparison with the general CMP which uses the slurry including abrasives, FAP takes advantage of planarity. resulting from decreasing pattern selectivity and defects such as dishing due to the reduction of abrasive concentration especially. This paper introduces the manufacturing technique of $Al_2$O$_3$-FAP using hydrophilic polymers with swelling characteristic in water and explains the self.texturing phenomenon. It also focuses on the chemical effects on tungsten film and the FAP is evaluated on the removal rate as a function of chemicals such as oxidizer, catalyst, and acid. The removal rate is achieved up to 1000A1min as about 70 percents of the general one. In the future. the research has a plan of the advanced FAP and chemicals in tungsten CMP considering micro-scratch, life-time, and within wafer non-uniformity.

  • PDF

Oxygen Coverage Measurment on Tungsten Surface by Neclear Microanalysis (Nuclear Microanalysis에 의한 텅스텐 표면의 산소 흡착조사)

  • 김명원;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.96-99
    • /
    • 1992
  • The microanalysics by the direct observation of 180 (P, a)'" nuclear reactions on tungsten (110) surfaceare investigated using a 2MeV Van de Graaff accelerator. This method allows the determination of very smallquantities of nuclei near the surface of samples. The yields increase with oxygen exposure. The oxygen coverage, 0, is 0.5 at 5 Langmuir and 1.0 at 15 Langmuir.5 Langmuir.

  • PDF