• Title/Summary/Keyword: 터빈 유량계

Search Result 30, Processing Time 0.022 seconds

Numerical study of three-dimensional flow through turbine flow meter (터빈유량계의 3차원 유동에 관한 수치적 연구)

  • Kim, J. B.;Park, K. A.;Ko, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.247-252
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel Line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. The standard k-$\epsilon$ model is employed to evaluate turbulent viscosity.

  • PDF

Numerical Analysis of Turbulent Flow Through Turbine Flow Meter (터빈유량계의 난류유동에 대한 수치해석)

  • Kim, J.B.;Park, K.A.;Ko, S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.573-578
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and tile Coriolis force are added to the equation of motion. The standard $k-{\varepsilon}$ model is employed to evaluate turbulent viscosity. At first the stability and accuracy of the program is verified with the flow through a square duct with a $90^{\circ}$ bend and on the flat plate.

  • PDF

Development of Flow Computer for High Flow Rate Natural Gas Metering Facility (고압 대유량 측정설비의 유량컴퓨터 개발)

  • Ha, Y. C.;Her, J. Y.;Lee, C. C.;Lee, K. J.;An, S. H.;Chung, J. T.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.272-277
    • /
    • 2000
  • The flow computer named Kogas I has been developed for measuring high flow natural gas. The developed model is classified as individual type in order that one flow computer covers one metering line. Nearly all of the functions are adopted similar to the foreign, commercial flow computer, and the merit of this flow computer is being able to apply for both orifice and turbine meters. The performance has been verified through the field test for 2 years.

  • PDF

Design, Construction & Operation of Natural Gas Flowmeter Calibration System (천연가스 유량계 교정 시스템의 설계${\cdot}$구축 및 운영)

  • Lee, Seungjun;Lee, Kangjin;Jung, Jongtae;Ha, Youngchul;Ahn, Seunghee;Lee, Chulgu;Her, Jaeyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.389-393
    • /
    • 2001
  • Korea Gas Corporation(KOGAS) have constructed a gas flowmeters' calibration facilities at Jungdong Bucheon. The facilities consisting of 6 reference turbine meters can perform calibrations of large capacity natural gas flowmeters up to $9,600 m^3/h$ at 95 kPa. This large capacity and high pressure natural gas facilities is traceable to the national standard of gas flow rate (KRISS). In this article the motive of construction and description of design are summarized.

  • PDF

An Investigationi into the Dynamic Characteristics of Turbine and Gear Motor Type Flowmeters (터빈형과 기어모터형 유량계의 동특성 검토)

  • 예용택
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.83-89
    • /
    • 2000
  • In hydraulic control system turbine and gear motor type flowmeters are widely used to measure the flow rate under steady flow conditions. With the recent growth of interest in the measurement of instantaneous values of unsteady flow rate the test of the transient response of these flowmeters are in some significance. however an unsteady flow rate mea-surment and its calibration method with a fast response and a high accuracy have not beendeveloped. In this research particularly the dynamic characteristics of turbine and gear motor type flowmeters are investigated experimentally and simple mathematical models are proposed. The measured flow rate waveforms are compared with those by remote instan-taneous flow rate measurement method(RIFM) which has been developed by author and used for calibration As the result of frequency response test gain and phase between the measured flow rate waveforms by turbine type flowmeter and those estimated by RIFM are in good agreement up to 70Hz For the gear motor type flowmeter th simulated results by a math-ematical model proposed here agree well with the experiment nearly up to 100Hz. Also it if sound that the pressure drop across the flowmeter is increased in proportion to the frequency of the flow rate variation in a high frequency region of more than 100Hz. It can be explained that the dealy of gear motor type flowmeter in high frequency regionis mainly attributed to a first order delay consisting of the inertia of gears and internal leakage of the gear motor.

  • PDF

Performance Test of Turbine Flowmeter According to Temperature Variation (온도변화에 따른 터빈유량계의 성능 시험)

  • Nam, Ki Han;Park, Jong Ho;Kim, Hong Jip
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.47-52
    • /
    • 2017
  • In general industry, TFM(turbine flow meters) as measuring instruments having high reliability are widely used in the trade of petroleum and in the measurement of tap water and hot water. The TFM is performed calibration for using in the field and is mainly calibrated at room temperature. Since accuracy of TFM depends on Reynolds number of fluid, TFM is calibrated at same Reynolds number by changing flow rate. Furthermore, the TFM using a fluid of high temperature should have considered for other factors such as the thermal expansion of the parts and characteristics change is unknown changes in the turbine flow meter accordingly. In this paper, two turbine flowmeter are experimentally studied about characteristics change using the facilities which can change fluid temperature from 6 degree celsius to 90 degree celsius. As a result, the turbine flow meter can be calibrated to minimize the error characteristic at a similar temperature and the actual temperature.

An Investigation of the Major Factors Relating to the Flow Fluctuation at a Natural Gas Metering Facility (천연가스 계량설비에서 발생하는 유량 헌팅 현상 원인 분석)

  • An, Seung-Hee;Her, Jae-Young;Jeong, Jong-Tae;Sin, Chang-Hun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.158-165
    • /
    • 2005
  • KOGAS(Korea Gas Corporation) has about a hundred of local stations to supply natural gas to the city gas companies and the power stations. As some severe flow fluctuation phenomena are observed in several governor stations, the investigation about the reasons and factors which are relating to flow fluctuation has been started. Some field surveys hav been carried out and experimental studies have been performed to find the fluctuation mechanism. As a result, it is found that the flow fluctuation is related with the length of straight pipe in front of the meter, the size of the header pipe and the variation of demand at the city gas company and the power station. Furthermore. it is also proved that both the length of the transmitter cable and the status of the coating of signal transmission cable do not affect flow fluctuation, but the measurement range of the differential pressure transmitter influences flow fluctuation. On the other hand, as the averaging the flow fluctuation is converged to less than 0.1 % in almost all of the cases, it is concluded that the quantity of flow fluctuation do not relates to metering accuracy directly.

  • PDF

A Study of Straight Pipe Length and Straightener in Orifice Meter Turbine Meter (오리피스 유량계와 터빈 유량계의 직관부길이와 유동안정기에 관한 연구)

  • Her, Jae-Young;An, Seung-Hee;Lee, Kang-Jin;Lee, Seung-Jun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.265-271
    • /
    • 2000
  • Orifice meters and turbine meters are frequently used for measuring gas flow in gas industry. However, to insure the accuracy of the measurement, a certain length of the meter run at the upstream of the flow meter is required. The objective of this study is to analyze flow measurement errors of the orifice meter quantitatively for shorter lengths of the meter runs than those suggested in the standard manuals with variation of diameter ratio( $\beta$ ratio) and flow rate and also to analyze flow measurement errors of the turbine meter with and without straightener. The test results showed that the flow measurement errors of the orifice meter were inversely proportional to the diameter ratio. In other words, when the diameter ratio is 0.3 and 0.7, the measurement error is $-7.3\%$ and $-3.5\%$, respectively. the main reason of the measurement error is due to the swirl effect from the configuration of the meter run at the upstream of the flow meter. In case the length of the meter run is shorter than that suggested In the standard, the swirl effect is not removed completely and it affects the flow meter's performance. As mentioned above, the less the pipe diameter ratio, the mon the flow measurement error. It means that the swirl effect on the orifice meter increases as the $\beta$ ratio decreases.

  • PDF

Air Similarity Performance Test of Turbopump Turbine (터보펌프용 터빈 공기상사 성능시험)

  • Lim Byeung-Jun;Hong Chang-Uk;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 2006
  • In liquid rocket engine turbopump, it is difficult to evaluate turbine performance for high pressure, high temperature circumstance. Turbine test is often done by using air at similarity condition so that the turbine can be tested at lower risk. This paper describes an air similarity test program of liquid rocket engine turbopump turbine. A test facility has been built to evaluate aerodynamic performance of turbines. The test facility consists of high pressure air supply system, mass flow rate measuring nozzle, test section, hydraulic break, exit orifice for pressure control, instrumentation and control system. This paper also presents how to decide the similarity conditions of the turbine test and describes how to control test conditions. Relative standard deviation of measurement parameter was less than 1% and measured turbine efficiency corresponded with analysis result within 2%.