• 제목/요약/키워드: 터빈 설계법

검색결과 60건 처리시간 0.026초

반응표면분석법에 의한 해상풍력터빈 최적배치 설계 (Optimal Layout Design of Offshore Wind Turbines by Response Surface Analysis)

  • 김지영;김경열;이준신
    • 한국해안·해양공학회논문집
    • /
    • 제23권2호
    • /
    • pp.163-170
    • /
    • 2011
  • 해상풍력단지 설계과정의 일환으로 실험계획법의 일종인 반응표면분석법을 이용하여 풍력터빈의 최적 배치조건을 연구하였다. 총 36기 터빈을 해상에 설치한다는 가정 하에 터빈들의 행렬조합, 행간 및 열간거리를 반응표면 분석시의 설계변수로 사용하였으며, 터빈 후류손실에 의해 저하되는 발전효율과 내부 전력선 공사비를 목적함수로 고려하였다. 이러한 설계변수와 목적함수간의 관계를 이용한 반응 최적화 분석을 통해 목표 설계조건을 도출하였으며, 해상풍력단지의 경제성을 확보하기 위한 풍력터빈의 배치조건은 "설계범위에서 행수 및 행간거리를 최소화하고, 최적 열간거리를 산정하여 적용해야 한다"는 결과를 얻을 수 있었다.

개수로 흐름에서 조류 터빈의 최적 배열 (Optimal layout of tidal current turbine array in open channel flow)

  • 한지수;정재영;황진환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.433-433
    • /
    • 2021
  • 본 연구는 개수로 흐름에서 조류발전단지의 터빈 최적 배열의 거시적 특성에 관한 연구를 수행하였다. 천수방정식을 통해 직사각형 개수로의 흐름장을 해석하였고, 상류와 하류단에 대해 각각 유입경계조건(inlet boundary condition)과 Flather 형식의 개방경계조건(open boundary condition)을 부여하여 일정 유량으로 흐르는 개수로 흐름을 구현하였다. 더불어, Strickler의 법칙을 확장한 반력공식을 연계하여, 개수로 흐름에 대한 조류 터빈의 영향을 반영하였다. 주어진 상류의 흐름 조건에 대해 조류발전량을 최대로 하는 최적 배열을 구하기 위해 터빈 반력모형을 연계한 천수방정식, 터빈간 최소간격, 그리고 발전단지영역을 제한조건으로 하는 발전량 최대화 문제를 구성하였다. 여기서 조류 터빈의 위치를 나타내는 벡터를 설계변수로 두었는데, 설계되는 터빈의 수가 증가함에 따라 최적화 문제의 계산량이 증가하지 않도록 수반법(adjoint method)을 경사도기반법(gradient-based method)에 연계한 방법이 이용되었다. 다수의 터빈초기배치로 상당한 수치실험이 수행되었고, 발전량 최대화를 이루도록 최적화된 터빈의 배치들이 큰 규모에서 고유한 형상으로 수렴함을 확인하였다. 이러한 특성은 발전단지의 너비와 터빈의 최소간격의 함수로 정의된 무차원수 E를 바탕으로 설명되었다. 구체적으로, E가 1보다 작을 때에는 선형배열이 최적배열로 나타났고, E가 1을 넘어 점차 커짐에 따라 하류에 오목한 형상을 보이다가 V-형태로 발전하는 양상을 보였다. 또한, 어느 임계 수 이상의 터빈이 배치되는 경우 일열 배열을 유지하지 못하고 이열 배열로 분리됨이 관찰되었다.

  • PDF

효율적인 2단계 최적화를 통한 3차원 해상풍력터빈 블레이드 설계 (Three-Dimensional Offshore Wind Turbine Blade Design by using Efficient Two Step Optimization)

  • 이기학;홍상원;정지훈;김규홍;이동호;이경태
    • 신재생에너지
    • /
    • 제3권3호
    • /
    • pp.63-71
    • /
    • 2007
  • 본 연구의 목적은 3차원 풍력터빈 블레이드 최적형상설계를 위한 실용적이고 효율적인 설계과정을 구현하는 것이다. 국내 연안의 해상풍력에 적용하기 위해서 통계적 모델을 이용하여 풍황자료를 분석하였다. 설계에 관련된 많은 수의 설계변수를 효과적으로 관리하기 위해서 설계과정은 운용조건 최적화와 블레이드 형상설계의 2단계로 구성하였다. 실험계획법에 의해 추출된 각 운용조건 설계점은 형상설계를 위한 입력 값으로 제공된다. 형상설계 단계에서는 최소에너지손실 조건과 결합된 BEMT를 이용하여 각 블레이드 단면에서의 시위길이와 피치각 분포를 최적화하였다. 블레이드 단면 익형은 NREL S830을 이용하였고, 익형의 공력성능은 XFOIL을 이용하여 예측하였다. 설계된 블레이드 형상의 성능해석을 수행하고 그 결과를 바탕으로 반응면을 구성하였다. 좀 더 나은 성능을 가진 블레이드 형상을 찾기 위해서 초기설계공간에서 확률적 방법을 이용하여 타당성 있는 설계공간까지 운용조건 설계변수를 이동시키고 구배최적화 기법을 통해 각각의 제약함수를 만족하면서 연간에너지생산량을 최대로 하는 최적블레이드 형상을 구현하였다. 제시된 최적설계과정은 풍력터빈블레이드 개발에 실용적이고 신뢰성 있는 설계툴로서 사용이 가능하다.

  • PDF

효율적인 2단계 최적화를 통한 3차원 해상풍력터빈 블레이드 설계 (Three-Dimensional Offshore Wind Turbine Blade Design by using Efficient Two Step Optimization)

  • 이기학;홍상원;정지훈;김규홍;이동호;이경태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.432-436
    • /
    • 2007
  • 본 연구의 목적은 3차원 풍력터빈 블레이드 최적형상설계를 위한 실용적이고 효율적인 설계 과정을 구현하는 것이다. 국내 연안의 해상풍력에 적용하기 위해서 통계적 모델을 이용하여 풍황 자료를 분석하였다. 설계에 관련된 많은 수의 설계변수를 효과적으로 관리하기 위해서 설계과정은 운용조건 최적화와 블레이드 형상설계의 2단계로 구성하였다. 실험계획법에 의해 추출된 각 운용조건점은 형상설계를 위한 입력값으로 제공된다. 형상설계 단계에서는 최소에너지손실 조건과 결합된 BEMT를 이용하여 각 블레이드 단면에서의 시위길이와 피치각 분포를 최적화하였다. 블레이드 단면 익형은 NREL S830을 이용하였고, 익형의 공력성능은 XFOIL을 이용하여 예측하였다. 설계된 블레이드 형상의 성능해석을 수행하고 그 결과를 바탕으로 반응면을 구성하였다. 좀 더 나은 성능을 가진 블레이드 형상을 찾기 위해서 초기설계공간에서 확률적 방법을 이용하여 타당성 있는 설계공간까지 운용조건 설계변수를 이동시키고 구배최적화 기법을 통해 각각의 제약함수를 만족하면서 연평균발생에너지를 최대로 하는 최적블레이드 형상을 구현하였다. 제시된 최적설계과정은 풍력터빈블레이드 개발에 실용적이고 신뢰성 있는 설계툴로서 사용이 가능하다.

  • PDF

입사각 변경에 따른 단단 3차원 축류형 터빈의 성능시험에 관한 연구 (A Study on the One-Stage 3-Dimensional Axial Turbine Performance Test with Different Incidence Angle)

  • 조수용;박찬우
    • 한국추진공학회지
    • /
    • 제5권2호
    • /
    • pp.24-31
    • /
    • 2001
  • 본 연구에서 축류형 터빈의 설계기술이 개발되었다. 설계를 위하여 우선적으로 기본형상에 대한 설계가 이루어졌으며 유선곡률법에 의하여 터빈 내부유로에서의 공기 물성치를 계산하였다. 계산된 여러 유로에서의 유동각들을 고려하여 익형의 형상을 설계하기 위한 설계변수들이 설정되었다. 설정된 형상변수로부터 정익은 C4 형상을 사용하여 설계되었으며 동익은 설계변수에 의하여 설계되었다. 정익은 일체형으로 제작되었으며 동익은 입사각의 변경에 따른 실험을 수행하기 위하여 분리형으로 제작하였다. 터빈입구에서의 공기력과 RPM에 따라서 터빈에서의 출력이 얻어졌으며 실험의 결과는 제작된 터빈이 반동터빈임에도 불구하고 입사각이 줄어드는 것에 비례하여 출력이 감소하는 현상을 보여주었으며 설계값에서 입사각이 7.5도 감소함에 따라 5%의 효율 감소가 발생되었다.

  • PDF

설계공간 타당성 향상을 통한 한국형 해상풍력터빈 블래이드 최적형상설계 연구 (Numerical Optimization of Offshore Wind Turbine Blade for Domestic Use using Improvement of the Design Space Feasibility)

  • 이기학;주완돈;홍상원;김규홍;이경태;이동호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.281-286
    • /
    • 2006
  • 본 연구의 목적은 차세대 대체에너지로 각광받는 풍력발전 중에서 육상발전보다 여러 가지 이점이 있는 한국형 해상풍력터빈 블레이드의 최적형상설계를 위한 알고리즘을 구현하는 것이다. 블레이드 단면 익형의 양력과 항력 분포는 XFOIL을 이용하여 예측하였다. 첫 번째 수준의 설계변수인 각각의 블레이드 지름과 축 회전수에서 익형의 공력변수들과 최소에너지손실 조건을 이용하여 두 번째 설계변수인 각 블레이드 단면에서의 시위길이와 피치각 분포를 최적화하였다. 그리고 성능결과를 바탕으로 반응면을 구성하고, 확률적 방법을 이용하여 타당성 있는 설계공간까지 첫 번째 설계변수를 이동시키고 구배최적화 기법을 통해 각각의 제약함수를 만족하면서 목적함수를 죄대로 하는 최적블레이드 형상을 구현하였다. 설계된 최적형상에 대해 탈설계점 해석을 수행하여 성능을 구하였다.

  • PDF

누설 유동을 고려한 다단 축류 터빈의 유선곡률해석법에 대한 연구 (A Study on the Through-Flow Analysis for a Multi-Stage Axial Turbine Considering Leakage Flows)

  • 김상조;김귀순;손창민
    • 한국추진공학회지
    • /
    • 제22권5호
    • /
    • pp.1-12
    • /
    • 2018
  • 유선곡률해석법은 다단 축류 터빈의 설계과정에서 필수적으로 이용되며, 실제 작동환경에서 발생하는 손실을 설계 단계에서 미리 반영할 수 있다는 장점이 있다. 하지만 이와 관련한 국내 독자 연구가 부족한 실정이다. 본 연구에서는 다단 축류 터빈에서의 누설 유동에 따른 성능해석을 위해 유선곡률해석법과 유동 혼합에 따른 손실 예측 모델을 적용하였다. 국내 운전 중인 86 MW급 발전용 가스터빈의 5단 축류터빈에 대해 본 연구에서 제안한 방법을 적용하여 성능해석을 수행하였다. 계산된 결과는 3차원 전산해석 결과와 비교하였으며, 유선곡률해석법이 가지는 장점과 한계에 대해 기술하였다.

단단 3차원 축류형 터빈 성능시험에 관한연구 (A Study of One-Stage 3-Dimensional Axial Turbine Performance Test)

  • 김동식;조수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2001년도 제16회 학술발표회 논문초록집
    • /
    • pp.59-62
    • /
    • 2001
  • 본 연구에서 터빈 설계기술이 개발되었다. 설계를 위하며 우선적으로 기본형상에 대한 설계가 이루어졌으며 유선곡률법에 의하여 터빈 내부유로에서의 공기 물성치를 계산하였다. 계산된 여러 유로에서의 유동각들을 고려하여 익형의 형상을 설계하기 위한 설계변수들이 설정되었다. 설정된 형상변수로부터 정익은 C4 형상을 사용하여 설계되었으며 동익은 설계변수에 의하여 설계되었다. 여러 입력과 RPM에 따라서 출력이 얻어졌으며 실험의 결과는 입사각이 줄어드는 것에 비례하여 출력이 감소하는 현상은 보여주었다

  • PDF

다단 축류 터빈에서의 초킹 영역 탈설계 성능 해석을 위한 평균반경 해석법 (Meanline analysis method for performance analysis of a multi-stage axial turbine in choking region)

  • 김상조
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.881-888
    • /
    • 2017
  • 일반적으로 다단 축류 터빈은 높은 압력비에서 유동 가속으로 인하여 특정 단에서 초킹 현상이 발생하게 된다. 초킹의 경우 유량 변화 없이 압력비만 증가하게 되며, 이러한 특성을 입구 유량 경계조건을 사용하는 일반적인 평균반경해석법을 이용하여 예측하는데 한계가 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 초킹 영역에서의 성능을 예측하는 알고리즘을 재안하였다. 초킹 지점 이후에는 초킹이 발생하는 노즐 혹은 로터 출구 유동이 팽창하는 특성을 반영하여 고정된 유량 조건에서 압력비가 변할 수 있도록 알고리즘을 구성하였다. 이러한 결과를 다단 축류 터빈 전산해석 결과 및 실험결과와 비교하여 신뢰성을 확인하였다.

  • PDF

다단 축류 터빈에서의 초킹 영역 탈설계 성능 해석을 위한 평균반경 해석법 (Meanline Analysis Method for Performance Analysis of a Multi-stage Axial Turbine in Choking Region)

  • 김상조
    • 한국추진공학회지
    • /
    • 제22권2호
    • /
    • pp.20-28
    • /
    • 2018
  • 일반적으로 다단 축류 터빈은 높은 팽창비에서 유동 가속으로 인하여 특정 단에서 초킹 현상이 발생하게 된다. 입구 유량 경계조건을 사용하는 일반적인 평균반경해석법을 사용하는 경우 유량 변화없이 팽창비만 증가하게 되는 초킹 현상을 예측하는데 한계가 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 초킹 영역에서의 성능을 예측하는 알고리즘을 제안하였다. 초킹 지점 이후에는 초킹이 발생하는 노즐 혹은 로터 출구 유동이 팽창하는 특성을 반영하여 고정된 유량 조건에서 팽창비가 변할 수 있도록 알고리즘을 구성하였다. 계산된 결과를 다단 축류 터빈 전산해석 결과 및 실험결과와 비교하여 신뢰성을 확인하였다.