• Title/Summary/Keyword: 터빈 사이클

Search Result 152, Processing Time 0.048 seconds

Analysis of a Refrigeration Cycle Driven by Refrigerant Steam Turbine (냉매증기터빈에 의해 구동되는 냉동사이클의 해석)

  • 정진희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.801-810
    • /
    • 2002
  • We have analyzed a combined cycle employing refrigerant Rankine cycle and simple refrigeration cycle with one working fluid. Although this cycle shows promising aspects such as simplicity, it does not have a good efficiency to compete with the other existing technologies because of high temperature at the exit of the turbine. However, by introducing a recuperator, it is found that the cycle efficiency can be improved up to the level much higher than other technology's efficiency.

A Predictive Model of the Generator Output Based on the Learning of Performance Data in Power Plant (발전플랜트 성능데이터 학습에 의한 발전기 출력 추정 모델)

  • Yang, HacJin;Kim, Seong Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8753-8759
    • /
    • 2015
  • Establishment of analysis procedures and validated performance measurements for generator output is required to maintain stable management of generator output in turbine power generation cycle. We developed turbine expansion model and measurement validation model for the performance calculation of generator using turbine output based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). We also developed verification model for uncertain measurement data related to the turbine and generator output. Although the model in previous researches was developed using artificial neural network and kernel regression, the verification model in this paper was based on algorithms through Support Vector Machine (SVM) model to overcome the problems of unmeasured data. The selection procedures of related variables and data window for verification learning was also developed. The model reveals suitability in the estimation procss as the learning error was in the range of about 1%. The learning model can provide validated estimations for corrective performance analysis of turbine cycle output using the predictions of measurement data loss.

Thermodynamic Performance Characteristics of Organic Rankine Cycle (ORC) using LNG Cold Energy (LNG 냉열을 이용하는 유기랭킨사이클(ORC)의 열역학적 성능 특성)

  • Kim, Kyoung Hoon;Ha, Jong Man;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • In this work a thermodynamic performance analysis is carried out for a combined cycle consisted of an organic Rankine cycle (ORC) and a LNG cycle. The combined system uses a low grade waste heat in the form of sensible energy and the LNG cold energy is used for power generation as well as for heat sink. The effects of the key parameters of th system such as turbine inlet pressure, condensation temperature and source temperature on the characteristics of system are throughly investigated. The simulation results show that the thermodynamic performance of the combined system can be significantly improved compared to the normal ORC which is not using the LNG cold energy.

System Analysis of the Liquid Rocket Engine with Staged Combustion Cycle (단계식 연소 사이클 액체로켓엔진의 시스템 해석)

  • Lee, Sang-Bok;Lim, Tae-Kyu;Yoo, Seung-Young;Oh, Seok-Hwan;Roh, Tae-Seoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.46-51
    • /
    • 2012
  • This study aims to develop the performance analysis program on the staged combustion cycle of the liquid rocket engine using liquid oxygen(LOx) as oxidizer, liquid hydrogen(LH2) and RP-1 as fuel. The developed analysis program can obtain the propellant mass flow rate, the specific impulse, and representative design values of engine components for the required thrust satisfying pressure, mass flow, and energy balance conditions. The analysis results show that the the specific impulses (Isp) compared to those of the real engines have been less than 1%. With additional constraints, the program will be improved for the system optimization.

  • PDF

Performance Comparison of R134a Organic Rankine Cycle (ORC) Using Hot Wastewater and Surface Seawater (온배수와 표층수를 이용하는 R134a용 유기 랭킨사이클의 성능 비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.768-773
    • /
    • 2012
  • This study was performed to find out the possibility that hot waste water from a thermoelectric power plant can be applied to Organic Rankine Cycle (ORC) by comparing the performance characteristics for use of the ocean surface water ($25^{\circ}C$) and hot waste water ($35^{\circ}C$) as a secondary fluid. The parameters considered in this study are four; superheating temperature, subcooling temperature, turbine efficiency, and pump efficiency. Main results of this study are summarized as follows : Overall efficiency of applying hot waste water to ORC is 87% higher than that of surface water. Thus it could be confirmed that hot waste water of the thermoelectric power plant can be applied to ORC.

A Study of the Influence of Condensing Water Temperature on Low Temperature Geothermal Power Generation (응축수온도가 저온지열발전 성능에 미치는 영향 연구)

  • Kim, Jin-Sang;Lee, Chung-Kook
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.17-23
    • /
    • 2007
  • Geothermal energy is used in various forms, such as power generation, direct use, and geothermal heat pumps. High temperature geothermal energy sources have been used for power generation for more than a century. Recent technical advances in power generation equipments make relatively low temperature geothermal energy to be available for power generation. In these applications, lower temperature geothermal energy source makes smaller difference between condensing water temperature and it. Various condensing water temperatures were investigated in analyzing its influence on power generation performance. Condensing water temperature of organic Rankine cycle imposed greater influence on power generation and its performance in lower temperature geothermal power generation.

  • PDF

Development of Energy Balance Program for Staged-Combustion Cycle of Liquid Rocket Engine (액체로켓엔진 통합 설계를 위한 에너지 발란스 프로그램 개발)

  • Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.93-97
    • /
    • 2010
  • The energy balance program which can balance the relations among energy, mass flow, pressure in the staged-combustion cycle of the liquid rocket engine has been developed. The modular approach has been chosen for the analysis; the engine cycle consists of the elements from the predefined component analysis program. The engine with the staged-combustion cycle has been decomposed into several principal component modules, such as a thruster chamber, turbopumps, turbines, supply system components and a pre-burner. The program has been verified with comparison of the results to the selected data of the space shuttle main engine.

  • PDF