• Title/Summary/Keyword: 터빈 노즐

Search Result 187, Processing Time 0.025 seconds

Air Similarity Performance Test of Turbopump Turbine (터보펌프용 터빈 공기상사 성능시험)

  • Lim Byeung-Jun;Hong Chang-Uk;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 2006
  • In liquid rocket engine turbopump, it is difficult to evaluate turbine performance for high pressure, high temperature circumstance. Turbine test is often done by using air at similarity condition so that the turbine can be tested at lower risk. This paper describes an air similarity test program of liquid rocket engine turbopump turbine. A test facility has been built to evaluate aerodynamic performance of turbines. The test facility consists of high pressure air supply system, mass flow rate measuring nozzle, test section, hydraulic break, exit orifice for pressure control, instrumentation and control system. This paper also presents how to decide the similarity conditions of the turbine test and describes how to control test conditions. Relative standard deviation of measurement parameter was less than 1% and measured turbine efficiency corresponded with analysis result within 2%.

Design and Performance Analysis of Steam Turbine for Variations of Degree of Reaction (반동도에 따른 증기터빈의 설계 및 성능해석)

  • Shin, Jung-Ha;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1391-1398
    • /
    • 2011
  • Design and performance analysis of a steam turbine for variations of degree of reaction were performed by computer simulation. Design parameters such as blade angles, exit areas, and heights of the nozzle and moving blade were represented as functions of the degree of reaction. The main performance factors such as turbine power, diagram efficiency, and axial thrust were also expressed in terms of the degree of reaction. For further information about the design and performance, the blade angles and main performance factors were investigated as functions of the flow coefficient. The turbine power and diagram efficiency reached a maximum value for a given degree of reaction and flow coefficient, and the symmetric shape of the moving blade showed distortion as the degree of reaction was increased.

An Experimental Study on Characteristics of Twin Spray Ejected from Two Pre Filming Airblast Atomizer (두 개의 공기충돌형 연료분사장치로부터 분사되는 이중분무특성에 관한 실험적 연구)

  • Park, Seung-Gyu;Han, Jae-Seob;Kim, Yoo;Park, Jung-Bae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.6-6
    • /
    • 1998
  • 항공기용 가스터빈 및 일반적인 산업용 분무시스템에서는 많은 양의 분사액체를 미립화 시키고 시스템의 연속적인 운전과 유지를 편리하게 하기 위하여 여러 개의 분사노즐을 열로 설치하여 동시에 분사하도록 하고 있다. 이렇게 동시에 분사할 경우, 노즐간에 거리가 충분히 크지 않으면 개별적으로 분사된 분무들이 서로 합해져서 하나의 연합된 분무군이 형성된다. 이렇게 Two element에 의해서 형성된 spray는 공급압력이 증가함에 따라 관성력이 증가하게 되어 중심부분에서 액막 혹은 액적상태로서 충돌이 발생하여 복잡한 분무특성을 가질 것이다. 따라서, 연합된 분무군의 특성을 이해하는 것은 응용의 측면에서 매우 중요하다고 할 수 있다.

  • PDF

The Atomization Mechanism and Spray Characteristics of Drum Type Rotary Atomizer (드럼형 회전연료노즐의 미립화 기구 및 분무특성 연구)

  • Lee, Dong-Hun;Choi, Hyun-Kyung;Choi, Seong-Man;You, Gyung-Won;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The atomization phenomena and spray characteristics of drum type rotary atomizer using centrifugal force from high rotational speed of gas turbine engine shaft were studied through rotary atomizer modeling analysis and experimental method. A test rig for rotary atomization that has range of $5,000{\sim}40,000\;rpm$ was used to make similarity for high speed rotating shaft. Spray visualization methodology and Phase Doppler Anemometry were also used to investigate the atomization mechanism and spray characteristics. We found that the rotating fuel spray has unique breakup process and we have to make breakup point earlier through increasing rotating speed to improve atomization performance.

The technological trend of advanced afterburners (최신 애프터버너의 기술경향 분석)

  • Hwang, Yong-Seok;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.395-399
    • /
    • 2009
  • Advanced afterburner used in the most modernized gas turbine has new designing paradigm to cope with reinforced power density. The most distinct change is the designing trend to integrate fuel injectors and flame holder in order to manage higher temperature of inlet air. F414 and F110-GE-132 engine adopted this methodology and installed a variable nozzle utilizing CMC(Ceramic Matric Composite) material and active cooling of nozzle flap with ejector nozzle in order to enhance the life cycle of engine components and an economical aspect. These technological trends can be utilized for an advanced ramjet engine and combined cycle engine like TBCC.

  • PDF

Spray Characteristics of the APU fuel injector with liquid properties (액체 물성치에 따른 APU 연료 노즐의 분무특성)

  • Choi, Chea-Hong;Jun, Yong-Min;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.175-178
    • /
    • 2008
  • Spray characteristics for the simplex atomizer are investigated. The atomizer was tested with kerosene which is generally used as a fuel for gas turbine engines. But it is very difficult and dangerous to measure spray performance. So water is used as a working fluid for measuring the droplet information. In this study, spray visualization was performed by using ND-Yag Laser and droplet size was measured by using PDPA system by using two different working fluid such as water and test fluid # 2 which has similar characteristics of the kerosene. The test results show that SMD of water bigger than test fluid # 2 about 5$\sim$15 mm because surface tension of water is higher by a factor of 3. But the spray angles and the spray shapes have similarity

  • PDF

Flow Symmetry Breaking Effect According to Instability in Annular Combustor Part.I : Characteristics of Nozzle Arrangement (환형연소기에서 불안정성에 따른 유동적인 대칭성파괴 효과 Part I : 노즐 배치의 특성)

  • Huido Lee;Keeman Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.62-73
    • /
    • 2022
  • This research proposes a method to control combustion instability in a gas turbine combustor having an annular combustor form and compares the effect of flow symmetric braking through nozzle arrangement and the corresponding change in equivalent ratio. To this end, the symmetry breaking effect was confirmed through mode analysis of FFT, Time signal, and phase trajectory. In addition, the unstable area and the stable area were identified through mode analysis, and this was shown on the contour map. The present research shows that instability occurs when the equivalent ratio and the arrangement of the nozzles are symmetry or when the nozzles are continuously arranged, but if the arrangement and equivalent ratio are not symmetry, the combustion instability decreases dramatically even if the difference in the equivalent ratio is small.

Spray Characteristics of a Pilot Nozzle in a Counter-Swirl Type Gas Turbine Combustor (가스터빈 연소기용 대향류 선회기의 분무 특성)

  • Ko, Y.S.;Kim, M.H.;Kim, D.J.;Min, D.K.;Chung, S.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.42-49
    • /
    • 1996
  • The structure of sprays from a simplex type pilot nozzle atomizer is studied experimentally by measuring velocities, Sauter mean diameter, and number density. Interaction of the spray with gas-phase flow field generated from a 1 MW range industrial gas turbine combustor adopt ing a counter-swirler is investigated. Various spray behaviors are reported. Especially interest ing characteristics are the tangential motion of the spray and of the spray with swirl interaction. It shows a Rankine combined vortex type of velocity characteristics, having linear velocity profile inside the inner core whole small particles exist and rapidly decreasing velocity profiles outside. Interacting spray has relatively uniform number density profiles compared to the nozzle spray itself.

  • PDF

Numerical Flow Analysis of a Supersonic Impulse Turbine with Nozzles and Rotor Blades (노즐과 로터가 장착된 초음속 충동형 터빈의 전산유동해석)

  • Park, Pyun-Goo;Lee, Eun-Seok;Jeong, Eun-Hwan;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.26-33
    • /
    • 2007
  • Four design candidates for a partial admission turbine have been chosen from a preliminary design process. Their performance were estimated through the 3-D numerical analyses using a frozen rotor method. In order to select the optimum design, each flow analysis result was compared with others. Flow characteristics in the passages and some types of losses induced by shocks and wakes were found from calculation results. Based on these calculations, a new rotor blade was redesigned and compared with previous one through flow analysis.

Steam Turbine Stage Design Using Flow Analysis (유동 해석을 이용한 증기 터빈 Stage 설계)

  • Kwon, G.B.;Kim, Y,S.;Cho, S.H.;Im, H.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.309-314
    • /
    • 2001
  • The high efficient steam turbine stage has been analyzed with the help of the 3-dimensional analysis tool. To increase the efficiency of steam turbine stage, the nozzle has to be designed by using the 3-dimensional stacking method. And the bucket has to be designed to cope with the exit flow of nozzle. To verify the stage design, therefore, the numerical analysis of the steam turbine stage was conducted. In this design, CFX-TASCflow was employed to predict the steam flow of the steam turbine stage. The numerical analysis was performed in parallel calculation by using the HP N4000 8 CPUs machine. The result showed the numerical analysis could be used to help to design the steam turbine stage.

  • PDF