• Title/Summary/Keyword: 터빈 노즐

Search Result 187, Processing Time 0.024 seconds

Molecular Dynamics Simulation to compare Turbine Rotational Power based on Nozzle Shapes (노즐 형상에 따른 터빈 축동력 형성 비교를 위한 분자동력학 시뮬레이션)

  • Kim, Su-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.425-432
    • /
    • 2019
  • Molecular dynamics simulations were carried out to analyze the impact on turbine rotational power based on nozzle shapes. y varying two parameters, turbine rotational velocity w and initial velocities ($V_x,V_y$) for generating molecules, turbine rotation velocities of molecules in turbine entrance arc region and turbine exit arc region were calculated. Average momentums were calculated over two regions, respectively and the differences (AMD) were compared and analyzed. The optimal range of w values to enhance AMD was investigated over 4 different nozzle shapes used, and an excellent nozzle shape to achieve more turbine rotational power was drawn.

Numerical Investigation of the Effect of Nozzle-Rotor Axial Clearance on the Supersonic Turbine Performance (노즐-로터 간극이 초음속 터빈의 성능에 미치는 영향에 대한 수치해석 연구)

  • Park Pyun-Goo;Jeong Eun-Hwan;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.331-336
    • /
    • 2006
  • This paper studies the effects of the nozzle-rotor axial clearance of a supersonic turbine on turbine performance. The nozzle-rotor axial clearance of the supersonic turbine developed to drive a turbopump for 30 ton class liquid rocket engines was varied and a numerical analysis of the turbines having the different nozzle-rotor axial clearances was conducted. It has been found that turbine performance degrades with an increasing axial clearance due to the increased stagnation pressure loss in the axial clearance region.

  • PDF

Numerical Analysis of the Effect of Nozzle Shapes on the Performance of a Partial Admission Supersonic Turbine (노즐 형상에 따른 부분 흡입형 초음속 터빈의 성능특성에 관한 수치적 연구)

  • Cho, Jong-Jae;Kwon, Tae-Un;Kim, Kui-Soon;Jeong, Eun-Hwan;Park, Pyun-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.23-29
    • /
    • 2010
  • A supersonic nozzle specially is one of the important part in a supersonic turbine usually adapted the impulse type, because the flow acceleration in the turbine theoretically is done only in the nozzle. The present study deals with numerical flow analysis to investigate the effect of nozzle shapes on the performance characteristics of a partial admission supersonic turbine. The flow analysis was performed for four different nozzle shapes. The shapes of the nozzles are circular, square, straight rectangular and bent rectangular nozzles. The results of the flow analysis showed that the aerodynamic loss of turbine is highly affected by the nozzle shapes, and the partial admission loss is also highly depended on nozzle shapes. Specially, bent rectangular nozzle had the best performance among the nozzle shapes

Numerical and Experimental Investigation on the Supersonic Impulse Turbine Design Performance Estimation Methodology (초음속 충동형 터빈의 설계성능 검증방법에 대한 해석 및 시험적 고찰)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Lee, Hang-Gi;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.7-14
    • /
    • 2009
  • A methodology of design performance estimation for the supersonic impulse turbine was investigated. Relations of similarity condition and test nozzle area ratio were derived. Comparison of efficiencies between the turbines with real nozzle and test nozzle are made numerically and experimentally. The CFD results and test result confirmed that the turbine with test nozzle was able to predict real turbine performance. In addition, design performance of the supersonic impulse turbine also could be estimated using real nozzle in air-medium test. In this case, design efficiency was found at the pressure-ratio and velocity-ratio of similarity condition of test nozzle.

Numerical Study of The Nozzle-Rotor Axial Gap Effect on the Supersonic Turbine Performance (충동형 초음속 터빈의 노즐-로터 축간극에 따른 성능변화 연구)

  • Jeong, Soo-In;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.160-163
    • /
    • 2010
  • We performed three-dimensional CFD analysis to investigate the effect of the nozzle-rotor axial gap of a partial admission supersonic turbine on the stage performance and the flow field. The computations are conducted for five axial gaps using flow analysis program, $FLUENT^{TM}$. The results show that the axial gap between nozzle and rotor give the effect on the mass flow rates of tip leakage and the flow angle at the rotor outlet.

  • PDF

Experimental Investigation of Turbopump Turbine : Turbine Performance and Effect of Nozzle-Rotor Clearance (터보펌프 터빈의 성능 및 노즐-로터 간극의 영향에 대한 실험적 고찰)

  • Jeong Eun-Hwan;Kang Sang-Hun;Shin Dong-Yoon;Park Pyu-Goo;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.78-86
    • /
    • 2006
  • This paper presents the performance test result of the 30-ton class turbopump turbine. Test has been conducted using high pressure cold air, The turbine overall performance has been measured for various pressure ratio and rotational speed settings. The nozzle-rotor clearance effect on turbine performance also has been tested for the four kinds of the nozzle-rotor clearance values. We found that turbine efficiency rated 51.1% at its design velocity ratio and pressure ratio of 13.5. We also found that turbine efficiency can be increased by 3.5% for approximately 1mm decrement of the nozzle-rotor clearance from its nominal value.

Estimation Methods for Turbine Nozzle Throat Area Reduction of A LOx/Kerosene Gas Generator Cycle Liquid Propellant Rocket Engine (액체산소/케로신 가스발생기 사이클 액체로켓엔진 터빈 노즐목 면적 변화 추정 방법)

  • Nam, Chang-Ho;Moon, Yoonwan;Park, Soon Young;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.101-106
    • /
    • 2019
  • Carbon deposition on the turbine nozzle throat of a LOx/kerosene gas generator cycle(open cycle) engine causes performance reduction of the engine. Estimation methods for a turbine nozzle throat area are proposed. The discharge coefficient of the turbine nozzle was estimated with the turbine gas properties such as gas constant, specific heat ratio, and temperatures. The pressure ratio and temperature ratio of the turbine nozzle throat, was utilized to estimate the discharge coefficient also. Estimated discharge coefficient of turbine nozzle throat of KSLV-II 1st stage engine shows the carbon deposition effects on the turbine nozzle throat of a LOx/kerosene open cycle engine.

A Study of the Second Stage Effect on a Partially Admitted Small Turbine (부분분사에서 작동하는 소형터빈에서 두 번째 단의 효과에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Choi, Sang-Kyu;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.898-906
    • /
    • 2008
  • A tested turbine consists of two stages, and an axial-type and a radial-type turbine are applied to the first and second stage, respectively. The mean diameter of the axial-type turbine rotor is 70 mm, and the outer diameter of the radial-type turbine is 68mm at the inlet. In this experiment, an axial-type turbine, two different radial-type turbines, and three different nozzle flow angles are applied to find the optimal design parameters. To compare the turbine performance, the net specific output torque is evaluated. The test results show that the nozzle flow angle on the first stage is a more important parameter than other design parameters for partially admitted small turbines to obtain high operating torque. For a 3.4% partial admission rate, the net specific output torque is increased by 13% with the addition of a radial-type rotor to the second stage when the turbine operates at $75^{\circ}$ nozzle flow angle.

The Effect of Rotor Tip Geometry on the Performance of Turbopump Turbine (터보펌프 터빈의 로터 팁 형상에 따른 성능변화 연구)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.197-204
    • /
    • 2007
  • Effect of rotor tip geometry on the performance of supersonic impulse turbine was investigated experimentally. Using the shrouded supersonic impulse turbine of the 30ton class liquid rocket engine turbopump as a base model, the measured performance of de-shrouded rotor was compared. The effect of nozzle-rotor overlap also has been investigated. It has been found that the magnitude of turbine efficiency is largely affected by the existence of the rotor shroud. However, measured efficiency sensitivity of the de-shrouded supersonic impulse turbine with respect to turbine tip clearance was relatively smaller than that of high performance reaction turbine. It also has been found that there exists nozzle-rotor overlap value which results optimum efficiency in supersonic impulse turbine.

  • PDF

Design of Velocity and Pressure Compounded Impulse Turbine (속도 및 압력 복합형 충동 터빈 설계)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • Design of velocity-compounded turbine for 75ton class LRE turbopump application and pressure compounded turbine for 30ton class LRE turbopump has been performed. 1D calculation and CFD analysis were conducted in determining blade and flow passage shape of velocity compounded turbine iteratively. Finally, 23.1% improved specific power and 5% reduced weight turbine to the original design was developed. In case of pressure-compounded supersonic turbine design, rotational speed was increased by 50% and the effect of carryover ratio, 2nd nozzle installation angle, leakage flow of 2nd nozzle, and work sharing factor was studied. Final 1D design resulted 36% increased specific power and 51% reduced weight comparing to the original single-row impulse turbine. It is anticipated that nozzle flow path design will be very important for the accomplishment of expected performance of pressure-compounded turbine and nozzle shape optimization will be conducted through the CFD analysis.