• Title/Summary/Keyword: 터빈출력

Search Result 288, Processing Time 0.026 seconds

Basic Configuration Design and Performance Analysis of a 100kW Wind Turbine Blade using Blade Element Momentum Theory (BEMT에 의한 100kW 풍력터빈 블레이드 기본설계 및 출력 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.827-833
    • /
    • 2008
  • In this study, mathematical expressions based upon the conventional BEMT(blade element momentum theory) was applied to basic 100kW wind turbine blade configuration design. Power coefficient and related flow parameters, such as Prandtl's tip loss coefficient, tangential and axial flow induction factors of the wind turbine were analyzed systematically. X-FOIL was used to acquire lift and drag coefficients of the 2-D airfoils and Viterna-Corrigan formula was used o interpolate he aerodynamic characteristics in post-stall region. Also, aerodynamic characteristics, measured in a wind tunnel to calculate he power coefficient was applied. The comparative results such as axial and tangential flow factors, power coefficients were presented in this study. Power coefficient, calculated by in-house code was compared with the GH-Bladed result. The difference of the aerodynamic characteristics caused the difference of the performance characteristics as variation as TSR.

A Design of GA-Based Model-Following Boiler-Turbine H∞ Control System Having Robust Performance (유전 알고리즘 기반의 강인한 성능을 가지는 모델추종형 보일러-터빈 H∞ 제어 시스템의 설계)

  • Hwang, Hyun-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.126-132
    • /
    • 2012
  • This paper suggests a design method of the model-following H${\infty}$ control system having robust performance. This H${\infty}$ control system is designed by applying genetic algorithm(GA) with reference model to the optimal determination of weighting functions and design parameter ${\gamma}$ that are given by Glover-Doyle algorithm which can design H${\infty}$ controller in the state space. These weighting functions and design parameter ${\gamma}$ are optimized simultaneously in the search domain guaranteeing the robust performance of closed-loop system. The effectiveness of this H${\infty}$ control system is verified by applying to the boiler-turbine control system.

Study on Optimization of Throttle Margin in High Pressure Turbine of Nuclear Power Plant (원자력 발전소 고압터빈의 교축여유(Throttle Margin) 최적화 연구)

  • Ko, W.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.43-49
    • /
    • 2010
  • In the present study, optimization of throttle margin for high pressure turbine to be retrofitted or partially modified for power uprating or life extension in nuclear power plant, has been performed to increase the electrical output. Throttle margin for high pressure turbine is required to maintain all the time the rated power by opening more of governor valves whenever inlet pressure is decreased due to the tube plugging of steam generator. If throttle margin of high pressure turbine is too much compared to remaining lifetime, loss of electrical output due to pressure drop of governor valves is inevitable. On the contrary, if it is too little, the rated power operation can not be accomplished when inlet pressure of high pressure turbine is dropped after many years operation. So, throttle margin for high pressure turbine in nuclear power plant is compromised considering for the degradation of steam generator, governor valve capacity, manufacturing tolerance of high pressure turbine, future plan of power uprating, and remaining lifetime of power plant.

Performance Improvement of Free Power Gas Turbine Type Gas Turbine Engine by Using of a MAT Cycle (MAT사이클을 이용한 분리축 가스터빈 엔진의 성능향상에 관한 연구)

  • 공창덕;김경두;기자영;최인수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.54-58
    • /
    • 2001
  • In order to Improve the performance of a free power turbine type gas turbine engine by injecting the atomized water into a compressor inlet., a study on Moisture Air Turbine (MAT) cycle was proposed. Compressor work by air-water mixtures in phase change was theoretically considered, and it was found that the water evaporation might reduce the compressor work. Cycle model calculations predicted that power increments of 21.7%, 20.2% and 18.4% by 1.5% water to the air flow rate at the compressor intake with rotational shaft speeds of 1000, 1210, 1350 rps were obtained, and also thermal efficiency due to the reduction of compressor work was improved.

  • PDF

The Development of the Turbo Generator System with Direct Driving High Speed Generator (고속 발전기 직접 구동 방식의 터보 제너레이터 시스템 개발)

  • 노민식;박승엽
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • This paper presents results of the development of the turbo generator system with structure which is HSG(High Speed Generator) installed directly to gas-turbine engine. Turbo generator with a high speed motor-generator directly has many advantages aspects of weight, size, lubrication system and complexity of the system compared of conventional turbo generator system with a gear box. But because of direct high speed operation of the high speed generator, we have to need stable high speed motor driving algorithm for perfect engine ignition when engine start. Also we have to need the design of the Power conditioning unit(PCU) for converting high speed AC output power to conventional AC power or needed DC power.

A Design of PID Controller using Quantitative Feedback Theory and Turbine Speed Control (정량적 궤환이론을 이용한 PID 제어기 설계 및 터빈 속도제어)

  • 김주식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • QFT is a very practical design technique that emphasizes the use of feedback for achieving the desired system performances in despite of plant uncertainties and disturbances. The loop shaping procedure of QFT is employed to design the robust controller, until the desired bounds are satisfied. This paper presents an optimization algorithm for designing PID controller using the loop shaping of QFT. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional system matrices and output vectors obtained from the QFT bounds. The feasibilities of the suggested algorithm are illustrated with a turbine speed control problem.

Improvement of Gas Turbine Performance Using LNG Cold Energy (액화천연가스의 냉열을 이용한 가스터빈의 성능향상)

  • Kim, Tong Seop;Ro, Sung Tack;Lee, Woo Il;Choi, Mansoo;Kauh, Sang Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.653-660
    • /
    • 1999
  • This work describes analysis on the effect of inlet air cooling by the cold energy of liquefied natural gas(LNG) on the performance of gas turbines. Gas turbine off-design analysis program to simulate the influence of compressor inlet temperature variation is prepared and an inlet air cooler is modeled. It is shown that the degree of power augmentation is much affected by the humidity of inlet air. If the humidity is low enough, that is the water content of the air does not condense, the temperature drop amounts to $18^{\circ}C$, which corresponds to more than 12% power increase, in case of a $1350^{\circ}C$ class gas turbine with methane as the fuel. Even with 60% humidity, about 8% power increase is possible. It is found that even though the fuel contains as much as 20% ethane in addition to methane, the power improvement does not change considerably. It is observed that if the humidity is not too high, the current system is feasible oven with conceivable air pressure loss at the inlet air cooler.

Design Parameter Sensitivity Analysis of a 200kW Class Micro Gas Turbine System (200kW급 마이크로 가스터빈 시스템의 설계 변수 민감도 해석)

  • Shin, Hyun Dong;Kang, Do Won;Kim, Tong Seop;Choi, Mun-Kyoung;Park, Pil Je
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.39-45
    • /
    • 2012
  • This paper describes the outcome of the design of a 200 kW class micro gas turbine and the sensitivity of its performance (efficiency and power) to the variations in major design parameters. The reference design parameters were set up based on the best available component technologies. The resulting net electricity generation efficiency of the micro gas turbine package was found to be competitive to those of other systems in the market. The sensitivities of power and efficiency to the variations in compressor and turbine efficiencies, pressure ratio, turbine inlet temperature, recuperator effectiveness, secondary air ratio, pressure loss ratios of both the cold and hot sides of the recuperator were estimated. Based on the sensitivity data, a simplified method to predict the variation in system performance responding to the combinations of small changes in all design parameters were set up and validated.

Development and Test of Gas Turbine Combustor for Ground Vehicle PPU(Primary Power Unit) (지상용 가스터빈 주동력장치(PPU) 연소기의 개발과 시험평가)

  • Lee, Dong-Hun;Lee, Kang-Yeop;Chen, Seung-Bae;Yang, Soo-Suk;Ko, Young-Sung;Choi, Seong-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.111-121
    • /
    • 2005
  • A 100kW class gas turbine combustor was developed and tested for PPU(Primary Power Unit) of ground vehicle. The combustor which employed annular-reverse type and pressure swirl atomizer was designed through 1-D analysis, 3-D thermal flow analysis and combustor performance was experimentally investigated on the combustor test rig. The test result was satisfactory. The developed combustor was also tested for environmental and endurance specification under engine adopted conditions and the application of a state-of-the-art gas turbine combustor to ground vehicle PPU turned out to be successful.

Enhancement of MCFC System Performance by Adding Bottoming Cycles (하부 사이클 추가에 의한 MCFC 시스템의 성능향상)

  • Ji, Seung-Won;Park, Sung-Ku;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.907-916
    • /
    • 2010
  • Integration of various bottoming cycles such as the gas turbine (GT) cycle, organic Rankine cycle, and oxy-fuel combustion cycle with an molten carbonate fuel cell (MCFC) power-generation system was analyzed, and the performance of the power-generation system in the three cases were compared. Parametric analysis of the three different integrated systems was carried out under conditions corresponding to the practical use and operation of MCFC, and the optimal design condition for each system was derived. The MCFC/oxy-combustion system exhibited the greatest power upgrade from the MCFC-only system, while the MCFC/GT system showed the greatest efficiency enhancement.