• Title/Summary/Keyword: 터보 기계

Search Result 388, Processing Time 0.029 seconds

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.31-38
    • /
    • 2005
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC(Kelyish Research Center) carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pump was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI(Korea Aerospace Research Institute). The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Development of Rotordynamic Analytical Model and Analysis of Vibration Response of a Turbocharger (터보차져의 로터다이나믹 해석모델 개발 및 진동응답 해석)

  • Kim, Byung-Ok;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.35-42
    • /
    • 2010
  • This paper deals with the development of analytical model of a turbocharger and its detail rotordynamic analysis. Two analytical models, which are verified by experimental modal testing, are proposed and the analytical model including rotor shaft extended to compressor and turbine wheel end side is chosen. A rotordynamic analysis includes the critical map, Campbell diagram, stability, and unbalance response, especially nonlinear transient response considering nonlinear fluid film force at bearings. Although the linearized analysis accurately predicts the critical speeds, stability limit, and stability threshold speed, the predicted vibration results are not valid for speeds above the stability threshold speed since the rotor vibrates with a subsynchronous component much larger than the one synchronous with rotor speed. Hence, for operating speed above the stability threshold, a nonlinear transient analysis considering nonlinear fluid film force must be performed in order to accurately predict vibration responses of rotor and guarantee results of analysis.

In-Situ Performance Analysis of Centrifugal Chiller According to Varying Conditions of Chilled and Cooling Water (현장에서 운전중인 터보냉동기의 냉수와 냉각수 조건 변화에 따른 성능 해석)

  • Kim, Yeong-Il;Jang, Yeong-Su;Sin, Yeong-Gi;Baek, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.482-490
    • /
    • 2002
  • This paper presents modelling and analyzing method of centrifugal chiller which has a rated capacity of 200 RT(703 kW) through on-site performance test. Field performance data of a chiller installed in a research building of KIST have been collected. Simple models were developed for predicting the heat exchanger and system performances by regression of chiller operation data during 5 days in August. The models proposed here account for the effect of variations of cooling capacity, temperatures and flew rates of secondary fluids. The proposed models can predict the actual performance data from June to September within $\pm$ 5% error. The COP of centrifugal chiller are estimated under the standard rating conditions and reduced mass flow rates of chilled and cooling water.

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.341-346
    • /
    • 2004
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pun was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI. The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

  • PDF

Numerical Studies on the Performance Prediction of a Turbopump System for Liquid Rocket Engines (액체로켓용 터보펌프 성능예측에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Lee, Gee-soo;Kim, Jin-han;Yang, Soo-Seok;Lee, Dae-sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.15-21
    • /
    • 2002
  • The hydraulic performance analysis of an entire pump system composed of inducer, impeller, volute and seal for the application of turbopumps is numerically performed using three-dimensional Navier-Stokes equations. A quasi-steady mixing-plane method is used on the impeller/volute interface to simulate the unsteady interaction phenomena. From this work, the effects of each component on the pump performance are investigated at design and off-design conditions through the analysis of flow structures and loss mechanisms. The computational results are in a good agreement with experimental ones in terms of the headrise and efficiency even though very complex flow structures are present. It is found that the asymmetric pressure distribution along the volute wall constitutes the main reason of the difference between experimental and computational results, due to the limitation of the quasi-steady method. Since the volute was found to be over-designed by the pressure distribution of the volute wall, re-design of the volute has been performed, resulting in an improved performance characteristic.

Performance Analysis of Turbofan Engine for Turbine Cooling Design (터빈 냉각설계를 위한 터보팬 엔진의 성능해석)

  • Kim, Chun-Taek;Rhee, Dong-Ho;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.

A Study on Reliability of Kriging Based Approximation Model and Aerodynamic Optimization for Turbofan Engine High Pressure Turbine Nozzle (터보팬 엔진 고압터빈 노즐에 대한 크리깅 모델 기반 근사모델의 신뢰도 및 공력성능 최적화 연구)

  • Lee, Sanga;Lee, Saeil;Kang, Young-Seok;Rhee, Dong-Ho;Lee, Dong-Ho;Kim, Kyu-Hong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.32-39
    • /
    • 2013
  • In the present study, three-dimensional aerodynamic optimization of high pressure turbine nozzle for turbofan engine was performed. For this, Kriging surrogate model was built and refined iteratively by supplying additional experimental points until the surrogate model and CFX result has effective difference on objective function. When the surrogate model satisfied this reliability condition and developed enough, optimum point was investigated. Commercial program PIAnO was used for optimization process and evolutionary algorithm was used for searching optimum point. As a result, difference between estimated value from Kriging surrogate model and CFD result converges within 0.01% and the optimized nozzle shape has 0.83% improved aerodynamic efficiency.

Effects of floating-ring seal clearance on the performance of the pump (플로팅링 실 간극이 터보펌프용 펌프의 성능에 미치는 영향)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Hong, Soon-Sam;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.38-43
    • /
    • 2007
  • Pumps for a turbopump generally operate under high rotational speeds and large head rise conditions. Therefore, reliability is a prime design requirement. Floating-ring type seals are frequently employed in a turbopump because of robustness despite of low hydraulic efficiency. There are many researches on the floating-ring seal itself, but the effects of the floating ring seals on the performance of the whole pump are not widely studied in spite of their importance. In the present study, experimental and computational studies on the effects of the radial clearance of the floating ring seals on the performance of a pump were performed. The experimental results showed that the head rise and efficiency increased as the floating-ring seal clearance was decreased. The results also showed the possibility that the leakage flow which was injected to the inlet of the inducer could enhance the suction performance of the inducer by diminishing the size of the backflows.

A Study on Engine Performance and Exhaust Emission Characteristics of Response Power 150HP Turbocharged Diesel engine (대응출력 150마력 터보차저 디젤기관의 동력성능 및 배출특성에 관한 연구)

  • Kim, Tae-Hyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.100-106
    • /
    • 2012
  • This is a thesis about the experiment of comparison characteristic of power and exhaust gas in the same condition between diesel engine that is equipped turbocharger to increase effectiveness of the engine which is recently used in a lot of industry which requires high power. Resulting of the experiment with natural aspiration diesel engine and turbocharger diesel engine, difference in low speed is not significant, but in high speed, effectiveness of turbocharger diesel engine is much higher than the other one. In other hand, in exhaust gas experiment, turbocharger model exhausts more NOX and $O_2$, but it doesn't significantly affect the result when it comes with decreasing of $CO_2$ and effectiveness of increased power characteristic. As a result, the turbocharger diesel engine is economically effective comparing with the natural aspiration diesel engine.