• 제목/요약/키워드: 터보블로워

검색결과 28건 처리시간 0.021초

CFD를 이용한 소형 2단 터보블로워의 공력해석 (Aerodynamic Characteristics Analysis of Small Two-Stage Turbo Blower Using CFD)

  • 서승재;류민형;조이상;조진수
    • 한국항공우주학회지
    • /
    • 제42권4호
    • /
    • pp.326-335
    • /
    • 2014
  • 터보블로워는 상대적으로 적은 체적유량에서 높은 압력이 요구되는 곳에 사용되는 대표적인 유체기계로서 다양한 산업에 응용되어 사용된다. 본 연구에서는 고속으로 회전하는 소형 2단 터보블로워의 정압상승 메커니즘을 이해하기위해, 1단 임펠러 영역과 터보블로워 전체 영역에 대해서 상용툴인 ANSYS 14.5를 이용하여 CFD해석을 수행하였다. CFD 해석과정에는 역압력 구배에 의한 유동박리 예측에 적합한 k-${\omega}$ SST 난류 모델을 적용하였다. 터보블로워의 전산해석 결과는 KS B 6311 및 KS A 0612에 따른 성능시험방법을 통하여 해석기법이 타당함을 검증하였다. CFD 해석결과 터보블로워의 압력상승은 선형적으로 나타나지 않으며, 안내깃에서의 손실과 케이싱과 임펠러 간극에서 손실이 발생하는 것으로 분석되었다. 소형 2단 터보블로워를 공력성능을 예측하기 위해서는 전체 유동영역에 대한 전산 해석이 필요하며, 실험과 전산해석의 오차에 대해 고려된 전산해석 결과가 선정되어야 한다.

가변속 터보블로워의 성능특성에 관한 연구 (A Study on Performance of a Variable-Speed Turboblower)

  • 최범석;박무룡;황순찬;박준영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.379-384
    • /
    • 2003
  • A turbo blower directly driven by a variable-speed BLDC motor was designed and tested to investigate performance characteristics. Computational analysis and performance tests validated the design method for the present turbo blower. Experimental measurements showed that the blower has an enough stability margin. This paper gives an outline of design, computational flow analysis and performance test for aerodynamic performance of the blower

  • PDF

유체 구조 연계 해석기법을 적용한 터보블로워 공력성능 해석에 관한 수치적 연구 (Numericla Study on the Aerodynamic Performances of the Turbo Blower Using Fluid-Structure Interaction Method)

  • 박태규;정희택;김형범;박준영
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.35-40
    • /
    • 2011
  • The present study aims at investigating the effect of the fluid-structure interaction on the aerodynamic performances in the turbo blower. The design specifications of the reference model driven by 400kW power were given as 7.43kg/s of mass flow rate, 1.66 of pressure ratio with 12000rpm of impeller rotating speed. Numerical simulation has been performed on the three cases based on the tip clearance between the impeller blade and the shroud. The CFX-turbo for flow fields and ANSYS-mechanical for structure domain were applied to solve the present FSI problems inside the turbo blower. Through the numerical results, the performances corrected by the FSI effects were proposed for the more reliable predictions.

임펠러 블레이드 두께가 터보블로워 성능에 미치는 영향 (AEffects of Impeller Blade Thickness on Performance of a Turbo Blower)

  • 박준영;박무룡;황순찬;안국영
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.5-10
    • /
    • 2010
  • This study is concerned with effects of impeller blade thickness on performance of a turbo blower. This turbo blower is developed as an air supply system in 250 kW MCFC system. The turbo blower consists of an impeller, two vaneless diffusers, a vaned diffuser and a volute. The three dimensional, steady state numerical analysis is simultaneously conducted for the impeller, diffuser and volute to investigate the performance of total system. To consider the non-uniform condition in volute inlet due to volute tongue, full diffuser passages are included in the calculation. The results of numerical analysis are validated with experimental results of thin blade thickness. Total pressure ratio, efficiency, slip factor and blade loading are compared in two cases. The slip factor is different in two cases and the comparison of two cases shows a good performance in thin blade thickness in all aspects.

FCEV 블로워의 소음특성과 개선방향에 관한 연구 (A Study on the Noise Property and its Reduction of the FCEV Blower)

  • 오기석;이상권;서상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1419-1424
    • /
    • 2007
  • Centrifugal turbo blower is requested highly efficiency and low noise in FCEV, but the noise generated by this machine causes of the most serious problems in the NVH performance. In general, centrifugal turbo blower is dominated by mechanical noise and aerodynamic noise. Mechanical noise is generated by rotation of the bearing, misalignment and unbalance. And aerodynamic noise is generated by the strong intersection between the flow discharged from the impeller and the cut-off in the casing. The first object of this study is to comprehend a noise property of the blower through the noise test. And, second object is to bring up the method that can reduce blower noise.

  • PDF

터보 블로워 표준화 제품 개발 사례 (Development of Standard Series for Turbo Blowers)

  • 송귀은;김광호;강신형;김회룡
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.99-103
    • /
    • 2000
  • This paper describes the development of standard series for turbo blowers. In mass production system, it is very required to standardize blowers to improve the productivity of ordering, estimating, manufacturing. To standardize blowers, we performed researches on the effects of $b_1$(impeller inlet width), $b_2$(impeller outlet width), ${\beta}_1$(blade inlet angle), ${\beta}_2$(blade outlet angle), Z(number of blades) of impellers and geometry of casing experimentally. Through this study, we chose the several best model of turbo blowers with high efficiency and low noise, which represent each specific speed series 63, 80, 100, 125, 160, 200, 250, 315. After the development of such standardized blowers, the test results are used to prepare the fan geometry and performance database for a selection software.

  • PDF

가변속 고속블로워의 성능특성에 관한 연구 (A Study on Performance of a Variable-Speed Turboblower)

  • 최범석;박무룡;황순찬;박준영
    • 한국유체기계학회 논문집
    • /
    • 제7권5호
    • /
    • pp.43-49
    • /
    • 2004
  • A turbo blower, driven by a high-speed blushless DC motor, was designed as a efficient substitute of a ring blower or a roots blower. Computational analysis and performance tests have been performed to investigate performance characteristics of the blower. Experimental measurements showed that the blower has a good stability margin. This paper gives an outline of design, computational flow analysis and performance test for aerodynamic evaluation of the variable speed turboblower.

BLDC 전동기와 공기포일베어링을 이용한 고효율 터보블로워 (High-Efficiency TurboBlowers using High-Speed BLDC Motors and Foil Air Bearings)

  • 오종식;이헌석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.309-314
    • /
    • 2003
  • High-efficiency turboblowers in the next generation have been successfully developed and commercialized first in the world, using the high-speed BLDC motors and the foil air bearings. About 20-35% savings in electricity consumption in the field are found in comparison with the conventional roots rotary blowers and the integral gear-driven turboblowers. Current TB75 and TB150 products are replacing the existing blowers in the worldwide market.

  • PDF

FCEV용 원심형 터보 블로워의 마운트 진동 저감에 관한 연구 (A Study on Mount Vibration Reduction of a Centrifugal Turbo Blower for FCEV)

  • 김윤석;이상권
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1073-1081
    • /
    • 2008
  • A centrifugal turbo blower of the fuel cell electric vehicle (FCEV) operates at very high speed above 30000 rpm in order to increase the pressure of the air, which supplied to a stack of FCEV, using rotation of its impeller blades. Vibration which originated from the blower is generated by unbalance of mechanical components, rotation of bearings and rotating asymmetry that rotate at high speed. The vibration is transmitted to receiving structure through vibration isolators and it can causes serious problems in the noise, vibration and harshness(NVH) performance. Thus, the study about reducing this kind of vibration is an important task. In this paper, dynamic analysis of the blower executed by numerical simulation and experimental analysis of the blower is also performed. Then, measured and simulated results are compared in order to validate of the simulation. Finally, reducing vibration through modifying mount stiffness is the main purpose of this paper.