• Title/Summary/Keyword: 터보공기 압축기

Search Result 34, Processing Time 0.016 seconds

TURBO TYPE AIR COMPRESSOR DESIGN FOR LOW VIBRATION LEVEL (저진동을 위한 터보형 공기압축기의 설계)

  • Kim, Myeong-Kuk;Jung, Yong-Soo;Park, No-gill
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.159-165
    • /
    • 1998
  • Bearing design of turbo type geared centrifugal air compressor for low vibration level has been studied. The Transfer Matrix Method was used in this paper to analyze the air-compressor consisting of impellers, multi-stage geared rotors, and oil-film hearings. We have to consider this air-compressor as multi-geared rotating system, because characteristics of rotor-bearing system are different from conventional characteristics of non-rotating system. From the view point of Rotordynamics, the stiffness and damping coefficient of oil-film bearing in case of compressor system are more sensitive than other design parameters such as shaft length, shaft diameter and the weight of impellers, etc. Therefore, the stiffness and damping coefficients on each bearing were considered as design parameters. As the result of this study, turbo type air compressor with low vibration level can be achieved.

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 600HP Gear Driven Turbo-Compressor (600HP급 기어구동형 터보 공기압축기 회전체계의 동역학적 설계 및 해석)

  • 최상규;김영철;권병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.50-57
    • /
    • 1997
  • A 600HP class high-speed gear driven 3-stage turbo-compressor (IGCC : Integrally Geared Centrifugal Compressor) driven by a 3600 rpm AC induction motor has been designed, of which low speed pinion runs at 35000 rpm and high speed pinion at 50000 rpm nominally. Due to its high speed operation, the system requires very reliable bearing selection and design as well as accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the IGCC rotor-bearing system predicted that the low speed pinion rotor mounted on 5-pad tilting pad bearings has two critical speeds before its design speed and high speed pinion rotor only one critical speed, and estimated critical speeds of both pinion shafts are away from the continuous operating speed enough to satisfy the corresponding API requirement. The forced response analysis with API specified maximum allowable unbalances also showed that unbalance responses are small enough for smooth operation of the system.

  • PDF

Development of a Direct-Connected Supersonic Combustor Test Facility (직결형 초음속 연소기 시험 설비 개발)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Hyung-Mo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.290-293
    • /
    • 2017
  • A direct-connected, continuous type combustion test facility was developed to test a supersonic combustor model used in scramjet engines. The facility requirements were determined by assuming the flight speed of Mach 5, yielding the combustor inlet flow speed of Mach 2. Also the cross-section of the supersonic combustor under test was assumed as $32mm{\times}70mm$. As a result, the facility was designed to have the flow total pressure of 548 kPaA, total temperature of 1,320 K, and flow rate of 0.776 kg/s. The facility consists of a turbo type air compressor, electric air heater, vitiation air heater and a two dimensional facility nozzle to accelerate the flow to Mach 2. Also, an oxygen supply system was added to compensate the vitiation. The exhaust de-pressurization system is not added. Designed pressure, temperature, and flow rate were verified through the test operation of the facility.

  • PDF

Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine (6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석)

  • Lee, Sunyoup;Lee, Seok-Hwan;Kim, Chang-Gi;Lee, Jeong-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2020
  • Reactivity controlled compression ignition (RCCI) combustion is one of dual-fuel combustion systems which can be constructed by early diesel injection during the compression stroke to improve premixing between diesel and air. As a result, RCCI combustion promises low nitrogen oxides (NOx) and smoke emissions comparing to those of general dual-fuel combustion. For this combustion system, to meet the intensified emission regulations without emission after-treatment systems, exhaust gas recirculation (EGR) is necessary to reduce combustion temperature with lean premixed mixture condition. However, since EGR is supplied from the front of turbocharger system, intake pressure and the amount of fresh air supplementation are decreased as increasing EGR rate. For this reason, the effect of various EGR rates on the brake power and thermal efficiency of natural gas/diesel RCCI combustion under two different operating conditions in a 6 L compression ignition engine. Varying EGR rate would influence on the combustion characteristic and boosting condition simultaneously. For the 1,200/29 kW and 1,800 rpm/(lower than) 90 kW conditions, NOx and smoke emissions were controlled lower than the emission regulation of 'Tier-4 final' and the maximum in-cylinder pressure was 160 bar for the indurance of engine system. The results showed that under 1,200 rpm/29 kW condition, there were no changes in brake power and thermal efficiency. On the other hand, under 1,800 rpm condition, brake power and thermal efficieny were decreased from 90 to 65 kW and from 37 to 33 % respectively, because of deceasing intake pressure (from 2.3 to 1.8 bar). Therefore, it is better to supply EGR from the rear of compressor, i.e. low pressure EGR (LP-EGR) system, comparing to high pressure EGR (HP-EGR) for the improvement of RCCI power and thermal efficiency.