• Title/Summary/Keyword: 터미널 생산성

Search Result 164, Processing Time 0.023 seconds

자동화 컨테이너 터미널에서의 AGV 충돌 방지 및 교착 해결 방안

  • Gang, Jae-Ho;Choe, Lee;Gang, Byeong-Ho;Ryu, Gwang-Ryeol;Kim, Gap-Hwan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.103-112
    • /
    • 2005
  • 자동화 컨테이너 터미널의 생산성을 향상시키기 위해서는 장치장과 안벽 사이를 오가며 컨테이너를 운반하는 무인유도 차량(Automated Guided Vehicle: AGV)들이 효율적으로 주행하여 제 시간에 필요한 위치에 도착함으로써 연계 작업들의 지연을 최소화하여야 한다, 만일 AGV들이 목적지까지 주행하여야 하는 거리가 길거나 주행 중에 다른 AGV들과의 충돌이나 교축을 피하기 위하여 대기하여야 하는 상황이 빈번히 발생하면 주행 효율이 떨어지게 된다, 주행 경로의 길이를 줄이기 위하여 경로들을 보다 유연하게 설정할 수 있게 허용하면 경로들간의 교차 가능성이 높아져 교통 통제가 어려워지고 결과적으로 충돌과 교착이 발생할 가능성은 높아진다. 특히 교착을 사전에 방지하기 위하서는 문제가 발생할 소지가 있는 영역을 미리 파악하여 일부 영역을 다른 AGV들이 점유하지 못하도록 제한하여야 하는데, 이는 자칫 AGV 주행 공간의 활용도를 떨어뜨릴 수 있다. 또한 교착의 파악과 이를 방지하기 위한 제어는 실시간에 이루어져야 하므로 연산 부담이 상당하다. 본 논문에서는 유연한 주행 경로 설정이 가능하며 주행 공간을 효율적으로 활용할 수 있는 주행 경로 표현법과 충돌 방지 방안을 제안한다. 또한 교착 발생 가능성을 사전에 파악하고 회피(avoidance)하는데 소요되는 연산비용을 줄여 실시간 적용 가능성을 높이기 위하여 교착해결(deadlock resolution)에 기반을 둔 AGV 주행 관리 방안을 제시한다. 본 논문에서 제안하는 방안의 효율성을 시뮬레이션을 통하여 검증해 보았다.

  • PDF

Computation of the Shortest Distance of Container Yard Tractor for Multi-Cycle System (다중 사이클 시스템을 위한 실시간 위치 기반 컨테이너 야드 트랙터 최단거리 계산)

  • Kim, Han-Soo;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.17-29
    • /
    • 2010
  • A container terminal productivity is maximized by a minimized time for processing containers. So, we have been elevated the container terminal productivity through an improvement of computing system, but there are a limitation because of problems for transportation management and method. A Y/T(Yard Tractor), which is a representative transportation, is able to do only one process, loading or unloading, at one time. So if the Y/T can do loading and unloading step by step at a same time, the processing time would be shortened. In this paper, we proposed an effective operating process of Y/T(Yard Tractor) Multi-Cycle System by applying RTLS(Real Time Location System) to Y/T(Yard Tractor) in order to improve the process of loading and unloading at the container terminal. For this, we described Multi-Cycle System. This system consists of a real time location of Y/T based on RTLS, an indicating of Y/T location in real time with GIS technology, and an algorithm(Dijkstra's algorithm) of the shortest distance. And we used the system in container terminal process and could improve the container terminal productivity. As the result of simulation for the proposed system in this paper, we could verify that 9% of driving distance was reduced compared with the existing rate and 19% of driving distance was reduced compared with the maximum rate. Consequently, we could find out the container performance is maximized.

항만 효율화를 위한 양적하 작업 시간 예측 서비스 개발 연구

  • 이준호;임성래;박순호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.236-238
    • /
    • 2023
  • 자율운항선박 기술개발 사업중 해운 6세부(자율운항시스템 원격관리 및 안전운영 기술 개발)과제에서 자율운항 선박을 지원하기 위한 6종 서비스 중 항만 효율화를 위한 양·적하 작업 시간 예측 서비스에 대한 연구 및 개발을 목표로 한다.

  • PDF

A study on the productivity effects of transport vehicle by pooling system at container terminals (이송장비의 Pooling 운행방식에 따른 터미널하역생산성 효과)

  • Ha, Tae-Young;Shin, Jae-Yeong;Choi, Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.377-382
    • /
    • 2005
  • This paper deals with productivity improvement of stevedoring system by pooling opertaions of transport vehicle at automated container terminal. Usually, in traditional container terminals, grouping operations of transport vehicle are applied for container crane because vehicle routing path is simple and vehicle assignment is easy. But this static assignment(SA) operation that arrsign vehicles to container crane ar apron reduces flexibility of vehicles. Therefore, This paper presented 4 dynamic assignment(DA) method to improve efficiency of vehicles. These 4 dynamic assignment method consider present situations of container crane such as sequence(Se), queue time(Qt), productivity(Pr), numeric of vehicle assignment(Nv), numeric of buffer(Nb) at vehicles assignment. At the results, dynamic assignment operation to consider Qt, Nv, Nb is most efficient and by next time, dynamic assignment operation to consider Se is superior more than static assignment operation. but, dynamic assignment operation to consider Pr or Qt of container crane only is inefficient than static assignment operation.

  • PDF

A Study on Economical efficiency Analysis by Handling Capacity and the Size of Container Terminal (컨테이너 터미널의 하역능력과 규모에 따른 경제성 분석에 관한 연구)

  • Woo Seung-Hwa;Song Yong-Seok;Nam Ki-Chan;Kwak Kyu-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.127-132
    • /
    • 2004
  • Most q the domestic container terminals are inferior to throughput q container. The reason why they have the difference between the handling capacity q planed quay and its real. By putting into quay handling equipment, the productivity of quay can be improved, waiting rate q the ship can be lowed. This paper suggests more resonable terminal construction, throughout comparing with previous construction way, improved handling capacity and the economical efficiency of equipment costs, labor costs, construction costs, operation costs on change of terminal size by adding the equipment.

  • PDF

Comparison of Various Indicators for Measuring Operational Performance of Container Terminals (Illustrative Case: Busan Port) (컨테이너 터미널의 운영성과 측정을 위한 제 지수의 비교 고찰 (부산항 현장자료를 중심으로))

  • Balliere Nicolas;Chun In-Sik;Kil Jong-Jin;Korbaa Ouajdi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.35-42
    • /
    • 2006
  • Recently, the harbor function is being reconsidered with the viewpoint of logistics, and various efforts are given to enhance the harbor performance agglomerating all procedures of stevedoring, treatment and background transportation of freight. The harbor performance largely depends on the efficient combination of the engineering part of harbor construction and the forthcoming logistics part. It may thus be anticipated in the future that the design concept of harbor construction will be transferred to a comprehensive consideration integrating both engineering and logistics parts to maximize the ultimate harbor operational performance. In the present study, various indicators for assessing a modem container terminal performance are presented far the purpose of helping harbor engineers understand the fundamental logistics through container handling operations. The indicators are compared, analyzed and compiled, by referring to the practical cases of Busan and Gwangyang ports as an illustration.

The Test of Gantry Travel Mechanism of ALV(Automated Lifting Vehicle) (자가하역차량(ALV:Automated Lifting Vehicle)의 주행구동장치 시험)

  • Kim, U-Seon;Kim, Seung-Nam;Jeong, Han-Uk;Go, Il-Gon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.317-323
    • /
    • 2006
  • The objective of this study is to test and modify the gantry travel mechanism of an ALV(automated lifting vehicle) as a main technology of development of ALV. For the purpose of the improvement of container terminal productivity, this study performed to develop the ALV as a part of R&D. In order to verify the design data and detect the errors of detailed drawings, we performed the various limited weight test under load and unload conditions. Through the reflect of final drawing based on the this test, we could use to produce the more complete vehicle.

  • PDF

A study on efficient operation method of handling equipments in automated container terminals (자동화 컨테이너터미널에서 운송장비의 효율적인 운영방안)

  • 이상완;최형림;박남규;박병주;권해경;유동호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.63-70
    • /
    • 2002
  • The main subject to become a hub pen is automation The automated container terminal has already operated in advanced pons and it bas been planned for the basic planning and operation design in domestic case. The key of automated container terminal is effective operation of both ATC(automated transfer crane) and AGV(automated guided vehicle) which is automated handling equipments. This is essential to productivity of automated container terminal. This study suggests the moat optimal method of equipment operation in order to minimize loading time using each three types of effective AT operation methods and AGV dispatching rules in automated container terminals. As the automated equipment operation causes unexpected deadlocks or interferences, it should be proceeded on event-based real tine. Therefore we propose the most effective ATC operation methods and AGV dispatching rules in this paper. The various states occurred in real automated container terminals are simulated to evaluate these methods. This experiment will show the most robust automated equipment operation method on various parameters(the degree of yard re-marshaling, the number of containers and the number of AGVs).

  • PDF

A Study on High Stacking System Development at Container Terminal (컨테이너 터미널의 고층 장치시스템 개발방안)

  • Ha Tae-Young;Choi Sang-Hei;Kim Woo-Sung;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.317-323
    • /
    • 2006
  • This paper deals with High Stacking System(HSS) development to develop a next generation port handling system for accommodating mega-sized container ships. It aims to develop the HSS that maximizes handling capacity within the limited space of the port. The system is expected to resolve the problem of yard space shortage as well as utilize innovative technology to ensure high-performance and automation at the terminal so as to enhance stevedoring productivity. The main objectives of this paper is suggesting the design concept drawing the HSS terminal and simulation analysis was undertaken taking into consideration performance of handling equipment, and port handling system Design concept drawing of the HSS terminal and will be used as base data for basic design and detailed design in actual operations of the terminal in the future. The HSS, to be applied to both conventional and new terminals, is expected to act as a catalyst for enhancing the value-added at ports.

  • PDF

Optimization of Dispatching Strategies for Stacking Cranes Including Remarshaling Jobs (재정돈을 포함한 장치장 크레인의 작업 할당 전략 최적화)

  • Kim, Taekwang;Yang, Youngjee;Bae, Aekyoung;Ryu, Kwang Ryul
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.155-162
    • /
    • 2014
  • In container terminals, stacking yard is the place where import and export containers are temporarily stored before being loaded onto or after being discharged from a ship. Since all the containers go through the stacking yard in their logistic flow, the productivity of the terminal critically depends on efficient operation of stacking yard, which again depends on how well the stacking locations of the incoming containers are determined. However, a good location for stacking an incoming container later can turn out to be a bad one when that container is to be fetched out of the stacking yard, especially if some rehandling is required. This means that good locations for the containers are changing over time. Therefore, in most container terminals, the so-called remarshaling is done to move the containers from bad location to good locations. Although there are many previous works on remarshaling, they all assume that the remarshaling can be done separately from the main jobs when the cranes are idle for rather a long period of time. However, in reality, cranes are hardly available for a period long enough for remarshaling. This paper proposes a crane dispatching strategy that allows remarshaling jobs to be mixed together with the main jobs whenever an opportunity is detected. Experimental results by simulation reveals that the proposed method effectively contributes to the improvement of terminal productivity.