• Title/Summary/Keyword: 터널 환기

Search Result 304, Processing Time 0.02 seconds

A study of Heat & Smoke Extraction Effects by the Various Operation of funnel Fan Shaft Ventilation (터널팬 샤프트 환기 방식에 따른 열 및 연기배출효과에 관한 연구)

  • Rie, Dong-Ho;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2004
  • Today's popular ventilation systems include the combined jet fans and electrostatic precipitation systems or the combined jet fans and vertical shaft system. Tunnels with these two ventilation systems applied have been designed and opened, more and more interest has been put in maintenance of a tunnel after opening. Therefore. it is to become more important to come up with the optimal operation mode and the method for the evaluation of ventilation system. In this study, to evaluate a tunnel ventilation and its economy, a dynamic simulation program was developed which can simulate the unsteady-state tunnel air velocity and concentration of pollutants according to the traffic flow variations and operation condition of a ventilation system. We clarified the effectiveness usage on tunnel ventilation by using it and also we could found the most economical ventilation operation mode by application in real exit tunnel. We obtained that combination of fan system and electrostatic precipitation system was more economical than jet fan priority operation mode.

A NUMERICAL STUDY OF THE VENTILATION AND FIRE SIMULATION IN A ROAD TUNNEL (도로터널 환기/제연 시스템 시뮬레이션)

  • Park Jong-Tack;Won Chan-Shik;Hur Nahmkeon;Cha Cheol-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.207-212
    • /
    • 2005
  • In designing a ventilation system of a road tunnel, a possibility of using the system as a smoke control system in case of a tunnel fire has to be considered. In the present study, a numerical simulation on ventilation system is performed considering jet fan operations and moving traffic. A fire-mode operation by reversing some fan operations in case of a tunnel fire is also simulated. The results show that ventilation operation can control the pollutants effectively, and fire-mode operation can control smoke and temperature effectively to prevent a disaster.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fires with Natural Ventilation (터널화재시 자연환기에 의한 연기거동에 관한 실험적 연구)

  • 김충익;유홍선;이성룡;박현태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-253
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fire with roof vent. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fire ranging from 7.3 to 15.4 cm in diameter with total heat release rate from 1.0 to 8.46kw. In case of 1 m high vent, smoke front reached to the tunnel exit at about 16 sec delayed with ventilation. The delay time grew longer with the vent height. The temperature after the vent was lower than that without the vent. The exit temperature declined maximum of $20^{\circ}C$ after passing the vent. It was confirmed that the thickness of smoke layer was maintained uniformly under the 25% height of the tunnel through the visualized smoke now by a laser sheet and the digital camcorder.

An Experimental Study of Smoke Movement in Tunnel Fires According to Ventilation Method (터널화재시 환기방식에 따른 연기거동에 관한 실험적 연구)

  • 이성룡;정진용;김충익;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.691-698
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fires according to vepntilation method. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fires ranging from 6.6 to 10 cm in diameter corresponding to total heat release rate from 0.714 to 2.5 kW. Temperatures near the ceiling were lowered by installing the vent, and much lowered by operating fan compared wiht tile case without vent. In case of forced ventilation, the exhaust fan was more effective than the intake fan. Vertical temperatures at the upper part of the tunnel were also lowered by installing the vent. But, when suction fan was operated, temperatures at the lower part of the tunnel were higher than that without vent.

Analysis of Fluid Flow around Ventilation Ducts inside a Vehicle Tunnel (터널내 환기용 덕트 주위의 유체유동 해석)

  • 서용권;이창우;최윤환
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.64-68
    • /
    • 1996
  • Analyzed in this paper is fluid flow in the region near the exhaust and blower ports of the ventilation ducts inside a vehicle tunnel. Theoretical analysis shows that prediction of the energy loss in this region is important for designing the ventilation system. A finite-difference numerical model for the two-dimensional turbulent flow field was used to obtain the flow solution as well as the energy loss. It was shown that the blower-nozzle angle ($\beta$) had an important role in establishing both the pressure gradient and the energy loss, while the effect of the distance between two ports on them was not so significant.

  • PDF

Model Test for the Determination of Distances between Jet-fans and Analysis of Recirculation (제트팬 설치 간격과 재유입 현상 분석을 위한 모형실험)

  • Kweon, Oh-Sang;Yoon, Chan-Hoon;Yoon, Sung-Wook;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.335-344
    • /
    • 2006
  • The domestic standards which used the standards of Road Association of Japan standards presents the distances of between jet-fans by the caliber of jet-fan. However, the Permanent International Association of Road Congress (PIARC) encourages it to be ten times a diameter of the tunnel. The distance of jet-fans installed in bases of two standards differs as much as two times, as so the proper basis after analysis of internal air current is needed since such difference can lead to disadvantage for selection of ventilation configuration. Based on Froude modeling theory, 1/40 scale acrylic model of a tunnel (215mm in diameter and 6.9m in length) and jet-fan (26.3mm and 31.6mm in caliber) was made for the measurement of changes in pressure and velocity due to the extension of tunnel for analysis of internal air current. And we measured the changes in pressure of surroundings of a jet-fan for confirmation of recirculation due to the exterior airs when the jet-fan is on. The results of the model test show that internal air current was not influenced by the caliber of jet-fan and its changes in pressure and velocity were stable in the point where it was nine times of diameter of the tunnel. Also the recirculation when the jet-fan is on could be verified. According to such results, in the cases of installing jet-fan in tunnels, the distances between jet-fans needs to be more than nine times the diameter.

Estimation of Pollutants Exhausted :From vehicles for Tunnel ventilation Control (터널환기제어를 위한 차종별 오염물 배출량 추정)

  • Hong, Daehie;Kim, Woo-Dong;Kim, Tae-Hyung;Min, Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.110-115
    • /
    • 2002
  • The tunnels built in recent years are equipped with traffic counters and pollution sensors (mostly, CO and Vl sensors). Utilizing these built-in sensors, it is possible to develop an algorithm to estimate the amount of pollutants exhausted from the each class of cars passing through the tunnel. These estimated data can be effectively utilized not only for ventilation control but also for designing ventilation facilities. The diffusion of pollutants in a tunnel can be described with one-dimensional diffusion-convection equation. This equation is approximated with interpolation functions and weighted residual method converting to adequate form for standard state estimate algorithms. With this converted equations, a least square optimization based algorithm is developed, whose outputs are the estimated amounts of pollutants emitted from each class of cars. In order to verify the feasibility of the developed algorithms, simulations are performed with the real data acquisitioned from the Tunnae tunnel located in Young-Dong highway in Korea.