• Title/Summary/Keyword: 터널 단면적

Search Result 258, Processing Time 0.023 seconds

Finite Element Analysis of Underground Electrical Power Cable Structures Considering the Effects of Construction Sequence (시공단계별 영향을 고려한 터널 전력구의 유한요소해석)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • In this paper structural analysis of underground electrical power cable structures which is excavated below the surface of the earth in the downtown area is carried out considering the effect of construction sequence. There are many various life-line facilities below the surface of the earth in the downtown area. MPDAP was used for finite element analysis of underground electrical power cable structures. Three typical sections are simulated by finite element models. Unbalanced equilibrium problems may be occurred when conventional finite element procedures were used for simulation of tunnel excavation. Therefore equilibrium perturbation concept was applied to solve these problems. The effects of time-dependent deformations in advancing tunnel excavation are considered in the stages of construction sequences as using the load distribution factor. It is shown that values of maximum displacement of both soil and rock surrounding underground electrical power cable structures obtained by our numerical studies are less than allowable values.

Research on Concrete Damage and Fireproofing Applications in Underground Fires (지하공간 화재에 따른 콘크리트 손상과 내화재 적용에 대한 연구)

  • Soon-Wook Choi;Soo-Ho Chang;Tae-Ho Kang;Chulho Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.169-188
    • /
    • 2023
  • Fires in tunnels are characterized by higher temperature rise and higher maximum temperatures compared to ground fires. For this reason, countries such as the Netherlands and Germany have developed separate temperature-time curves for use in tunnel fires. Fires in tunnels cause damage to the tunnel lining, such as loss of section and deterioration of the material properties. This study reviewed the design concept of fire stability of structures, section loss due to spalling, changes in physicochemical and mechanical properties of tunnel lining materials, fireproofing materials for structure safety, and fire damage prediction models. In order to secure the stability of a structure against fire, it is necessary to identify the type of structure and the possible fire load at the design stage, identify the expected section loss and damage range, and prepare for such damage through fireproofing materials. In this study, we have summarized the matters that can be referred to in performing such a series of tasks and presented our opinions on them.

A Study on the Mechanical Characteristics of Tunnel Structures and Ground Behavior by Synthetic Analysis Method with Tunnel Monitoring Results used (터널의 계측결과 종합분석에 의한 지반의 거동 및 터널 구조체의 역학적 특성 연구)

  • Woo, Jong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.115-124
    • /
    • 2003
  • In this study, the relationships between the displacement and stress of the tunnel using various analysis methods were compared with monitoring results carried out during construction and maintenance monitoring. The behavior of tunnel were measured in the subway tunnel passing comparative soft the weathering and analyzed both security and mechanical characteristics of the tunnel lining. With the results of simplified monitoring observed in top heading and bench excavation tunnel, it is confirmed that the crown settlement is larger than the surface settlement. it is interesting to note that the crown settlement and the crown shotcrete lining stress are widely used monitoring items for the back analysis. It is analyzed that the residual water pressure applied in the drainage type tunnel is reasonable.

The 3-Dimensional Tunnel Analysis Considering Stress Concentration . Load Distribution Ratio (응력집중을 고려한 터널의 3차원 거동에 관한 연구 -하중분담률 중심으로)

  • 이인모;최항석
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-110
    • /
    • 1996
  • To simulate the three4imensional effect occurring near the tunnel face in a two -dimensional model, empirical load -dirtribution ratio concept is frequently used in tunnel design. In this paper, three -dimensional analysis is performed and its results are compared with those of two dimensional analysis'to investigate the applicability of the loadiistribution ratio concept. Especially, stress concentration near the tunnel face is investigated in depth. A parametric study is performed to investigate the effect of each factor on the load distribution ratio. The factors considered here include unsupported span length, initial stress, rock quality, tunnel size and the depth of tunnel location Moreover, the load -distribution ratios for the typical tunnel sections in Seoul Subway to be used in the tunnel design are suggested.

  • PDF

A study on the optimum cross-section design that satisfies the criteria of aural discomfort in Honam high speed railway tunnel (이명감 특성을 고려한 호남고속철도 터널단면 설정에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.19-36
    • /
    • 2007
  • When the trains runs at a high speed in the tunnel, passengers feel a pain in the ear that fast pressure fluctuation inside the tunnel being delivered with pressure fluctuation inside the passenger car. These phenomena are called "aural discomfort". Aural discomfort increase the passengers' uncomfort so that it is decreased a service level and serious case, it is able to damage the ear of the passenger. therefore aural discomfort must be considered the high-speed railroad tunnel cross-section design. To solve the problem of aural discomfort in a railway tunnel, some countries have standards on aural discomfort. It has been studied that different countries have different standards on aural discomfort. For that reason, the criteria of aural discomfort was reviewed through the standards of Kyungbu HSR line and different countries in this paper. And then Numerical Analysis of the Characteristics with tunnel cross-section change has been used for the selection of the optimum cross-section of Honam. The numerical analysis results were compared to field test results in order to verifying the reliability of the numerical analysis.

  • PDF

The Effect of Cut-slope on Structural Behavior of Cut-and-Cover Tunnel (굴착경사가 개착식터널의 구조적거동에 미치는 영향에 관한 연구)

  • 유건선
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.245-255
    • /
    • 2001
  • Existing cut-and-cover tunnels are designed regardless of cut-slope under the assumption that the overburden weight of backfill soil acts on tunnel arch and the earth pressure at rest acts on tunnel walls. However, actual earth pressures acting on the tunnel lining depend on open-cut size composed of cut-slope and cut-width, and thus the tunnel lining shows a different structural behavior. This study investigated the effect of cut-slope on structural behavior of the cut-and-cover tunnel lining as follows; Firstly, a comprehensive numerical analysis method using FLAC2D code was used and verified by field measurements of tunnel profile. Secondly, based on the verified numerical analysis technique, earth pressure acting on the lining, and displacement and sectional force developed on the lining were estimated with various shapes of cut-slopes$30^{\circ}\;, 456{\circ},\; 60^{\circ},\; and\;75^{\circ}%). Numerical analysis results indicate that the steeper cut-slope shows the more displacement and moment of the tunnel lining.

  • PDF

Evaluation of the influence of pillar width on the stability of a twin tunnel (필라폭이 병설터널의 안정성에 미치는 영향 평가)

  • You, Kwang-Ho;Kim, Jong-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.115-131
    • /
    • 2011
  • Recently, considering the aspects of disaster prevention and environmental damage, the construction of a twin tunnel is increasing. When constructing a twin tunnel, the stresses are concentrated at the pillar so that stability of the tunnel is decreased. Since the previous studies on the behavior of a twin tunnel pillar are mainly restricted to the estimation of the tunnel behavior and the analysis of surface settlement, there is a limit to a quantitative stability estimation of the pillar. Therefore, it was quantitatively investigated how the pillar width of a twin tunnel affects its stability. To ensure this end, global tunnel safety factors obtained numerically using shear strength reduction technique, local safety factors of a pillar using the equation that Matsuda et al. suggested, and strength/stress ratios of the pillar were estimated and their results were analyzed for two sections with different rock covers. For a reasonable design of a twin tunnel pillar, it was turned out that strength/stress ratio, the local pillar safety factor, and global tunnel safety factor should be used interrelatedly rather than independently.

Suggestion on Reasonable Boundary Conditions for Modeling a Tunnel Shield by Displacement Control Method (변위 제어를 통한 터널 쉴드 모델링의 적정 경계조건 제안)

  • Kim, Jeong-Soo;Kim, Moon-Kym
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.512-515
    • /
    • 2011
  • 터널 해석은 주로 지표침하와 터널 라이닝 내 단면력 산정에 초점이 맞춰지며 이는 시공단계를 고려한 3차원 수치해석 모델을 이용해 결정할 수 있다. 수치해석 시 shield는 응력 제어, shell element로 모델링하는 방법 등으로 모사될 수 있다. 한편 변위 제어를 통한 쉴드 모사는 shield를 적절한 경계조건으로 처리함으로서, 다른 shield 모사 방법에 비해 모델링 작업을 간소화하고 해석의 효율성을 높일 수 있다. 본 연구에서는 변위 제어에 의한 shield 모사를 위한 적정 경계조건을 제안한다. 이를 위해 시공단계가 고려된 유한요소해석을 사용하여, 쉴드 및 굴착면에서의 경계조건 변화와 이에 따른 지표침하 관측 수행하였다. 제안된 shield 변위 제어로부터 얻어진 해석결과를 이론적인 해와 비교함으로서, 제시된 shield 모델링 방법의 적정성과 지반 거동 변화를 평가하고자 한다. 해석 결과는 지반 모델의 지표침하를 기준으로 관찰되었으며, 변위제어에 의한 결과와 요소에 의한 모델링 결과가 유사하게 얻어짐을 보여준다. 또한 변위제어의 쉴드 모사에서 회전 구속보다 변위 구속 조건에 지배적으로 영향을 받음을 확인하였다.

  • PDF

A study on the fire characteristics according to the installation type of large smoke exhaust port in a small cross sectional tunnel fire (소단면 대심도 터널 화재시 대배기구의 설치형태에 따른 화재특성 연구)

  • Choi, Pan-Gyu;Baek, Doo-San;Yoo, Ji-Oh;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.201-210
    • /
    • 2019
  • Recently, due to the efforts to mitigate traffic congestion and expansion of space efficiency, the construction of underground roads has been increased in big-scale cities. Since tunnels in the city have a higher chance for a fire leading to a great tragedy during a severe traffic jam than mountain tunnels, it is highly likely that it will be constructed as a tunnel, having a small cross section, for small vehicles. However, if they are constructed as such small-vehicle tunnels, it would be possible to reduce the design fire intensity while the concentration of harmful gases would increase due to a reduction in the small cross sectional area, led by a decrease in the tunnel height. In this study, behaviors of fire smoke by the installation interval and format of large-scale exhaust-gas ports were examined and compared in the analysis of temperatures and CO concentrations of a tunnel and its results were as the following. Although there were no significant differences in the smoke spreading distance between installation intervals, but in this study, 100 m was found to be the most effective installation interval. The smoke exhaustion performance was found to be excellent in the order of $4m{\times}3m$, $6m{\times}2m$, and $3m{\times}2m$ (2 lane) of the smoke spreading distance. Although there was no significant difference in the smoke spreading distance between formats of large-scale exhaust-gas ports, it was found that the smoke spreading distance was larger than other cases when it was $3m{\times}2m$ in the fire growing process. The analysis of smoke spreading distances by the aspect ratio showed that a smoke spreading distance was shorted when its the smoke spreading distance was found to be shorter when its traverse distance was relatively longer than its longitudinal distance.

A Study on the Stability of Twin Tunnels in Anisotropic Rocks Using Scaled Model Tests (이방성 암반내 쌍굴터널의 안정성에 대한 모형실험 연구)

  • Kim, Jong-Woo;Kim, Myeong-Kyun
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.205-213
    • /
    • 2012
  • In this study, scaled model tests were performed to investigate the stability of twin tunnels constructed in anisotropic rocks with $30^{\circ}$ inclined bedding planes under the condition of lateral pressure ratio, 2. Five types of test models which had respectively different pillar widths and shapes of tunnel sections were experimented, where both crack initiating pressures and deformation behaviors around tunnels were investigated. The models with shallower pillar width showed shear failure of pillar according to the existing bedding planes and they were cracked under lower pressure than the models with thicker pillar width. In order to find the effect of tunnel sectional shape on stability, the models with four centered arch section, circular section and semi-circular arch section were experimented. As results of the comparison of the crack initiating pressures and the deformation behaviors around tunnels, the semi-circular arched tunnel model was the most unstable whereas the circular tunnel model was the most stable among them. Furthermore, the results of FLAC analysis were qualitatively coincident with the experimental results.