• Title/Summary/Keyword: 터널 단면적

Search Result 258, Processing Time 0.02 seconds

A Study on Effective Blasting Patterns on Small Area Tunnel (소단면 터널에서 효율적인 발파 패턴에 관한 연구)

  • Lim, Han-Uk;Kwon, O-Sung
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.17-28
    • /
    • 2006
  • In underground drilling and blasting, particularly in small headings(generally under $20m^2$), the prospects for changes of blast parameters are usually more limited than those employed by large area tunnel(over $20m^2$). It is also well known that the consumption of explosives and specific drilling rate for small tunnel areas are exponentially increased also tunnel areas decrease. To confirm above results, some tests for two tunnels(irrigation water tunnel with $6.0m^2$ area, electric supplies tunnel with $15.0m^2$) are also carried out in this study. As a results, specific drilling rate and specific charge for irrigation water tunnel were decreased from 13.8 to $7.7m/m^3$ and from 4.88 to $2.56kg/m^3$ respectively. Those for electric supplies tunnel were also decreased from 8.0 to $4.9m/m^3$ and from 3.46 to $2.22kg/m^3$.

  • PDF

A study on the effects of changes in the estimating criteria for ventilation requirements in road tunnels (도로터널 소요환기량 산정기준 변화에 따른 영향 분석)

  • Kim, Hyo-Gyu;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.779-793
    • /
    • 2019
  • The ventilation rate (Qreq) requirement in road tunnels is not just a basic information for determining the tunnel cross-sectional area, but also a major factor for the ventilation system selection. The Qreq is predominantly dependent on the vehicle traffic volume, while among others, the vehicle exhaust emissions and permissible standards are critical. This paper analyzes the changes in the Qreq designing criteria and/or recommendations suggested by World Road Association and local authorities over the last 20 years, since the first local designing criteria was established in 1997 by Korea Expressway Corporation. Additionally, based on the updated vehicle emission standards of Ministry of Environment and recent recommendations of the World Road Association (WRA), changes in the Qreq and its effects are studied in terms of the length and grade of the tunnel.

A numerical study on the behavior of existing and enlarged tunnels when widened by applying the pre-cutting method (Pre-cutting 공법을 적용한 터널 확폭 시 기존 및 확폭터널의 거동에 관한 수치해석적 연구)

  • Kim, Han-Eol;Nam, Kyoung-Min;Ha, Sang-Gui;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.451-468
    • /
    • 2020
  • Aging tunnels with small cross-sections can cause chronic traffic jams. This problem can be solved by widening the tunnel. In general, when the tunnel is expanded, the outer portion of the existing tunnel is excavated through a mechanical or blasting method. Such excavation affects not only the surrounding ground but also the existing tunnel. The application of the pre-cutting method can be a solution to these problems effectively. Therefore, if the widening of tunnel is performed by applying pre-cutting method, analysis of the impact of this method must be performed. In this study, in order to analyze the effect of applying pre-cutting in tunnel widening, numerical analysis is performed at six ground grades, from grade I to weathered rock. The analysis is performed with the expanding lane and the excavation length of pre-cutting as variables. In addition, the analysis is focused on the displacement of crown of the existing tunnel and the enlarged tunnel. As a result, the crown displacement of the enlarged tunnel is confirmed to converge at the same value regardless of the excavation length of the pre-cutting when the tunnel widening is completed. In the case of existing tunnels, uplift of crown occurs within 5 m of the front of the tunnel surface, and the shorter the excavation length of pre-cutting is found to be effective in preventing the occurrence of uplift.

Analysis on the Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 이석원;박시현;최순욱;배규진
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells measured the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measurements, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process. Considerations on the validity of the field measurements were paid.

Evaluation of seismic performance of road tunnels in operation (운영 중인 도로 터널의 내진 성능 평가)

  • Ahn, Jae-Kwang;Park, Du-Hee;Kim, Dong-Kyu;Kim, Kwang-Yeom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.69-80
    • /
    • 2013
  • This study evaluates the seismic performance of road tunnels designed before the provisions for seismic design of tunnels were first established in 1999. Extensive design data and site investigation reports are investigated to select tunnels sections that are considered to be most susceptible to seismically induced damage under earthquake loading. Detailed analyses are performed on selected tunnels. The methods used are method of displacement and dynamic analysis. In performing the method of displacement, which is a type of pseudo-static analysis method used for underground structures, full domain and reduced domain modeling were used. The dynamic analyses are performed using finite difference method and using nonlinear constitutive model. Comparisons show that the reduced domain method of displacement match very closely with the dynamic analysis, demonstrating that it is the most suitable method for evaluating the seismic performance of road tunnels built in rocks. It is also shown that road tunnels, for which seismic design were not applied, are safe under the seismic risks corresponding to an earthquake with a return period 1000 years. It is concluded that additional seismic retrofit of tunnels is not necessary.

The development of a back analysis program for subsea tunnel stability under operation: transversal tunnel section (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 횡단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Lee, Sang-Hyun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.195-212
    • /
    • 2017
  • When back analysis is used for the assessment of an operating subsea tunnel safety in various measurement information such as stress, water pressure and tunnel lining and ground stiffness degradation, the reliable results within tolerable error rate can be obtained. By utilizing a commercial geotechnical analysis program FLAC3D, back analysis can be performed with a DEA which has already been successfully validated in previous studies. However, relative more time-consumption is the drawback of this approach. For this reason, this study introduced beam-spring model-based on FEM solver which uses less analysis time relatively. Beam-spring program capable of structural analysis of a circular tunnel section was developed by using Python language and combined with the built-DEA. From the measurement datum, expected to estimate the stability of an operation tunnel close to real-time.

A Development of Analysis Technique for Defects Which Were Incorporated a Propagation Process of Cracks in Tunnel Structures (터널구조물에 대한 균열변상의 진전해석이 가능한 유지관리 해석기법)

  • Park, Si-Hyun;Park, Sung-Kun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.310-313
    • /
    • 2010
  • 본 논문에서는 등가소성힌지길이 개념을 새롭게 개선하여 도입함하여 구조물의 거동특성을 평가하는 프로그램을 개발하였다. 시간의 경과 및 외부환경 변화와 더불어 발생 가능한 지하구조물의 변상은 해당 구조물의 구성재료 및 작용하는 외압의 형태 등에 의해 다르게 나타나게 된다. 즉, 장기적인 지반외력의 변화에 의해 콘크리트 구조체의 천단부에 큰 휨압축응력과 인장을력이 생기는데, 내측에는 압축이 생기고 외측에는 인장균열이 발생한다. 또한 측벽이나 어깨부에서는 인장응력과 전단응력에 의한 균열이 발생하기도 한다. 따라서 개발된 프로그램으로 균열발생단면에 대하여 축력, 휨모멘트, 균열폭을 서로 연관 지을 수 있게 될 뿐만 아니라 균열폭의 확장을 추적해 나갈 수 있다. 해석기법을 토대로 개발된 해석모듈을 이용하여, 본 해석 기법의 타당성에 대한 검증을 실시하였다. 검증을 위해서는 수평보구조와 터널구조에 대해 각각 해석을 수행하였다. 그 결과, 구조물 내에서의 균열의 진전이 점차적으로 확장되어 가는 것이 표현 가능한 것을 확인하였으며, 해석결과의 타당성을 확인하였다.

  • PDF

A Numerical Study on Safety According to the Excavation Step for Large Cross Section Tunnel (대단면 터널굴착에 있어서 굴착순서에 따른 수치해석적 안정성 검토)

  • Jung, Hee-sun;Yoon, Ji-sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.335-341
    • /
    • 2005
  • In construction of a large cross section NATM tunnel, to keep the tunnel face stability by the ground itself bench cut method is commonly used. In order to necessity of partial face excavation method, we have to look for more enhanced method that can maintain better stress intensity. This paper presents a stress distribution of the Center Diaphragm Method from the partial face excavation methods, with the numerical analysis, and induced the optimal face distance, which is minimizing stress concentration and the optimal excavation step. Commerical 3 dimensional continuum analyzing FLAC-3D Ver. 2.1 program is used for the analysis. Analyses were performed to investigate ground behavior for tunnels with variable bench-length varying from 2m to 40m.

  • PDF

A New Design Method of Reinforcement Ahead of a Tunnel Face by using Convergence-confinement Method and Load-transfer Approach (내공변위-제어법과 새로운 하중전이함수를 이용한 터널 천단보강공 설계)

  • In, Sung-Yoon;Jeong, Sang-Seom;Kim, Yong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.81-90
    • /
    • 2009
  • In this study the behavior of a steel pipe structure used as an auxiliary method was evaluated by the convergence-confinement method and load-transfer approach, and the result was compared with that of numerical approach and in-situ measured data. As calculated partially increased displacement of the installed pipe to obtain the tunnel displacement. A numerical analysis simulate well the general behavior of measured displacement of tunnel crown. Through this study, it was found that the proposed procedure produces conservative result so that it can be applied in preliminary design of the auxiliary method of tunnel face.

Analysis of Mechanical Behavior of Existing Tunnel by the Construction of Shaft Nearby (근접한 수직구 건설에 따른 기존 터널의 역학적 거동 분석)

  • 이석원;조만섭;이성원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.109-122
    • /
    • 2003
  • In order to release the pressure fluctuations and micro-pressure wave induced by the entering of train into the small cross sectional tunnel, it has been reported that the construction of air shaft has more advantages with respect to economy and constructability than the enlargement of cross section of existing tunnel. The field monitorings and analytical studies were conducted simultaneously in this study to analyze the mechanical behavior of existing railway tunnel, new cross tunnel and new shaft by the construction of new shaft nearby. The results showed that the minimum distance from existing tunnel to new shaft which secures the stability of existing tunnel was found to be half diameter of existing tunnel. On the three dimensional mechanical behavior of existing tunnel by the construction of new shaft, the results from the analytical study and field monitoring had a similar trend. The analytical study and field monitoring results, however, produced somewhat different results on the mechanical behavior of new shaft itself. These conclusions induce that the analytical method which has been applied on the analyses of horizontal tunnel could not be applied in the same way on the analysis of vertical shaft.