• Title/Summary/Keyword: 터널입구형상

Search Result 11, Processing Time 0.025 seconds

비대칭 고속 쌍동선의 선미터널 입구영역 경사각 변화에 따른 유체역학적 특성 연구

  • Park, Geun-Hong;Lee, Gyeong-U;Seo, Gwang-Cheol;Kim, Sang-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.218-219
    • /
    • 2018
  • 쌍동선형은 단동선형에 비해 안정성 및 저항성능이 우수하며 그 형상은 일반적으로 대칭 및 비대칭으로 구분한다. 이러한 쌍동선은 고속으로 운항하는 경우 선체사이의 파랑 중첩현상을 줄이기 위해 주로 비대칭선형을 사용한다. 또한, 중소형선박은 선미터널을 적용하여 추력효율을 향상시킨다. 본 연구에서는 비대칭 고속 쌍동선의 선미터널 입구영역의 경사각 변화에 따른 유체역학적 특성(저항성능, 항주자세, 압력분포)에 대한 수치해석 연구를 수행하였다. 수치해석은 상용프로그램 STAR CCM+를 이용하였다.

  • PDF

Effect of Tunnel Entrance Shape of High Speed Train on Aerodynamic Characteristics and Entry Compression Wave (고속전철의 터널입구 형상이 공력특성 및 터널입구 압축파에 미치는 영향)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Zhu, Ming
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.111-118
    • /
    • 2004
  • The work presented in this paper concerns the aerodynamic characteristics and compression wave generated in a tunnel when a high speed train enters it. A large number of solutions have been proposed to reduce the amplitude of the pressure gradient in tunnels and some of the most efficient solutions consist of (a) addition ofa blind hood, (b) addition of inclined part at the entrance, and (c) holes in the ceiling of the tunnel. These are numerically studied by using the three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, based on FEM method. Computational results showed that the smaller inclined angle leads to the lower pressure gradient of compression wave front. This study indicated that the most efficient slant angle is in the range from $30^{\circ}$ to $50^{\circ}$. The maximum pressure gradient is reduced by $26.81\%$ for the inclined angle of $30^{\circ}$ as compared to vertical entry. Results also showed that maximum pressure gradient can be reduced by $15.94\%$ in blind hood entry as compared to $30^{\circ}$ inclined tunnel entry. Furthermore, the present analysis showed that inclined slant angle has little effect on aerodynamic drag. Comparison of the pressure gradient between the inclined tunnel hood and the vertical entry with air vent holes indicated that the optimum inclined tunnel hood is much more effective way in reducing pressure gradient and increasing the pressure rise time.

Qualitative Factor Analysis on Speed Reduction of Drivers in Expressways Tunnel Section (고속도로 터널구간 도로이용자 속도감소의 정성적 요인분석 연구)

  • Park, Jun-Tae;Lee, Soo-Beom;Kim, Tae-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.151-158
    • /
    • 2011
  • Tunnel sections on the expressway are different from rest of sections on the expressway in terms of velocity, the number of passing cars, and vehicle density which, in particular, affect drivers' behavior before and after drivers pass through the tunnel. However, literature review reveals that former studies are too focused on quantitative indicator to consider qualitative aspects. Thus, this study tried to find out qualitative factors affecting speed reduction in tunnel sections based on questionnaire surveys and its analysis in tunnel sections selected by taking consideration of diverse conditions. Analysis showed that factors concerning tunnel configuration (lane width, shoulder width, and tunnel length) related to very long tunnels increasingly popular recently had some effects on reduced speed inside of tunnels. It appeared that visual environment such as visibility of tunnel entrance had an impact in speed reduction and vehicle speed tended to change according to lighting illumination level inside of tunnels. It is expected that continual investment would be made in technological development related to expressway tunnel design and service improvement based on this study.

A Study on Tunnel Entry Design Considering the Booming Noise Resulting from Micro-Pressure Wave (미기압파에 의한 터널 출구 소음 저감을 위한 고속철도 터널 형상 개선에 관한 연구)

  • 목재균;최강윤;유재석
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.959-966
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the results, the flow disturbances occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

A study on tunnel entry design considering the booming noise resulting from micro-pressure wave (미기압파에 의한 터널출구소음저감을 위한 고속철도 터널형상개선에 관한 연구)

  • 목재균;최강윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.627-635
    • /
    • 1997
  • In general, the booming noise intensity at tunnel exit is strongly related to the gradient of the compression wave front created by high speed train entering the tunnel. This paper presents some results in relation with the compression wave front produced when the high speed train enters a tunnel. Four kinds of tunnel entrance shape with real dimensions were studied to investigate the formation of compression wave front inside tunnel by train entering tunnel. Computations were carried out using three-dimensional compressible Euler equation with vanishing viscosity and conductivity of fluid. According to the reslts, the flow disturbance occured at tunnel entrance were eliminated by tunnel hood with same cross sectional area. The compression wave front is formed completely at 30-40m from tunnel entrance. The maximum pressure gradient of compression wave front is reduced by 29.8% for the inclined tunnel hood and reduced by 21.5% for the tunnel hood with holes at the top face with tunnel without hood. The length of the inclined hood is 15m and the length of the hood with holes is 20m.

  • PDF

Factor Analysis on Psychological Cause of Speed Reduction in Expressway Tunnel Section Utilizing Importance-Performance Analysis (IPA) (고속도로 터널부 속도 감소에 관한 심리적 요인분석)

  • Lee, Ki Young;Kim, Tae Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.127-134
    • /
    • 2010
  • Tunnel sections on the highway are different from rest of sections on the highway in terms of velocity, the number of passing cars, and vehicle density which, in particular, affect drivers' behavior before and after drivers pass through the tunnel. However, literature review reveals that former studies are too focused on quantitative indicator to consider qualitative aspects. Therefore, this paper conducts survey questionnaire and IPA (Importance Performance Analysis) to find out qualitative improvements on velocity drop on the tunnel sections. The results show as follows: First, drivers require improvements of tunnel form (length and curved form inside tunnel) which is derived from long distance tunnel. Second, experts primarily ask for amendment of geometric characteristics. With comparison of requirements of both drivers and experts, there are many differences in length of tunnel and form of curved tunnel. This also presents that drivers don't satisfy with both length of tunnel and form of curved tunnel that are provided as a part of highway design factors.

Design of Femoral Tunnel Entrance to Operate Notchplasty (Notchplasty 시술을 위한 대퇴골 터널 입구 형상 설계)

  • Chung G.Y.;Kim K.T.;Lee T.H.;Ahn J.Y.;Han J.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.279-283
    • /
    • 2000
  • After ACL reconstruction. abrasion or wear of graft appeared frequently because of contact stresses between femoral tunnel and ACL. To minimize these problems. optimal shape of femoral tunnel is necessary. In this study. we evaluate friction force by degree of wear due to abrasion of soft tissue and develop 3-dimensional FEM model using ANSYS 5.5.1 version to analyze stress growths between femoral tunnel and ACL, We conclude that femoral tunnel angle must be slacked parallel to tunnel direction to minimize contact stress.

  • PDF

Effect of Train Nose Shape on the High-Speed railway Tunnel Entry Compression Wave (고속열차의 선두부 형상이 터널 입구압력파에 미치는 영향)

  • 김희동;김태호;서태원
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.596-603
    • /
    • 1998
  • The entry compression wave, which is generated at the entrance of the tunnel, is almost always associated with the pressure transients in the tunnel as well as the impulse noise at the exit of the tunnel. It is highly required to design the train nose shape that can minimize such undesirable phenomena. The objective of the current work is to investigate the effects of the train nose shape on the entry compression wave. Numerical computations were applied to one-dimensional unsteady compressible flow in high-speed railway train/tunnel systems. A various shape of train noses were tested for a wide range of train speeds. The results showed that the strength of the entry compression wave is not influenced by the train nose shape, but the time variation of pressure in the entry compression wavefront is strongly related to the train nose shape. The current method of the characteristics was able to represent a desirable nose shape for various train speeds. Optimum nose shape was found to considerably reduce the maximum pressure gradient of the entry compression wave.

  • PDF

Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways (고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구)

  • 목재균;백남욱;유재석;최윤호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF

The Estimate of Air Content in the Reservoir Water intake Facilities (저수지 취수시설 공기관 내 공기량 산정식에 관한 고찰)

  • Yun, Dong-Koun;Jo, Jin-Hoon;Kim, Jin-Taek;Han, Guk-Heon;Lee, Seung-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.174-174
    • /
    • 2012
  • 최근 농업용저수지의 경우 기상이변에 따른 수위조절을 위하여 다량의 수문을 일시에 개방하는 사례가 지역적으로 증가하고 있는 추세이다. 그에 따라 당초 목적인 농업용수를 위한 취수시설이 최근 홍수조절용으로 활용됨에 따른 취수시설 내 공동현상이 발생하고 있다. 이러한 공동현상으로 인해 수시설물의 안정성에 문제가 발생하고 그에 따른 2차 재해위험이 있을 수 있다. 따라서 본 연구에서는 공동현상 방지를 위해 취수시설 공기관 설계기준에 대하여 고찰하였다. 공동현상을 방지하고 홍수량을 적절하게 배제하기 위해서 유입되는 공기량산정식이 필요하다. 공기관 단면결정은 농업생산기반정비사업 설계기준(필댐)의 구조설계 부분에 정리되어 있지만 이는 이수측면에서 설계 및 시공이 진행됨에 따라서 취수에 대한 목적을 달성하기에는 어려움이 있다. 따라서 취수시설의 기능과 역할을 증대시키고자 취수시설 적정 공기관 설계를 분석하여 향후 신규, 개보수 및 현장 유지관리에 활용하기 위한 기초자료를 제시하였다. 이러한 공동현상 및 공기관 설계를 위하여 현장조사, 수치해석, 수리모형시험을 병행하여 문석하였다. 그 결과 취수탑의 형상변수와 수위에 대한 수치해석을 수행하여 변수가 소요공기량에 미치는 영향은 조절게이트 개폐율을 증가시킬수록 소요공기량이 증가하며, 약 80%의 개폐율에서 소요공기량이 최대가 되었다. 방수로 직경이 증가하면, 공기관 입구와 끝단의 압력차가 감소하여 소요공기량이 감소하고, 수위가 증가하면 소요공기량이 증가하는 것으로 분석되었다. 따라서 공동현상 방지를 위해 공기량 산정식은 취수터널에 연직수문이 설치되어 있는 6가지 흐름의 형태에 따라서 $/Q_w=0.04(F-1)^{0.85}$, $Q_a/Q_w=K(F-1)$, $Q_a/Q_w=0.014(F-1)^{1.4}$, $Q_a/Q_w=0.015(F-1)^{1.4}$의 관계식 중 적정한 것을 사용하여야 할 것으로 판단되며, 또한 공기관에 유입부의 허용부압은 수두로부터 1.0m이하로 하고, 공기관 내 풍속은 $45^m/s$를 기준으로 최대 $90^m/s$로 하여야 할 것으로 판단된다.

  • PDF